项目名称: 类进化计算研究:基于可达特性分析的类进化算法理论与应用
项目编号: No.61203311
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 自动化学科
项目作者: 陈皓
作者单位: 西安邮电大学
项目金额: 26万元
中文摘要: 进化计算的性能可从其可达特性的角度来衡量,包括群体基于进化运算对问题空间中任意点进行搜索的可达率和达概率两个主要方面。申请人的预研究显示,此二者间存在既对立又统一的矛盾关系,且此矛盾是影响系统计算效率和可靠性的本质原因。因此如何协调此矛盾就成为了改进进化算法性能的关键。本项目组的前期研究结果启发我们,在群体中建立适当结构的类组织可有效提高系统协调和控制进化运算可达特性中矛盾关系的能力。因此基于类结构的进化计算模型具有良好的改进空间和发展前景,并具备了发展成为高性能新型计算框架的潜力。鉴于此,本研究将尝试从进化运算可达特性的角度来分析模拟进化系统的计算机理,并探索建立类进化计算的基本理论和方法,研究解决其中的若干关键问题,形成有效的类进化计算模型,同时针对电力系统经济负荷分配问题设计高性能的优化算法。相关研究成果拟发表SCI/EI论文8篇,申请专利1项,培养研究生1-3名。
中文关键词: 类进化计算;可达特性分析;工程优化;进化算法;
英文摘要: The attainability, as a view of measuring the performance of evolution computing, can be summarized as two major properties that are the attainable ratio and attainable probability of population searching for arbitrary point in coding space driven by evolutionary operators. The preliminary study shows there is a both opposite and unified contradictory relation between the attainable ratio and attainable probability of the evolution searching operation in evolution simulation system, and this contradictory relation is the root cause of influencing the computing efficiency and reliability of the evolution algorithm. So, solving the contradiction in evolution searching operation will be the key to improve the performance of evolution algorithm. Our previous researches inspire us that creating a proper clustering structure in population can improve the coordination and control ability of the system for harmonizing the attainable ratio with the attainable probability in evolution searching operation. Consequently, the clustering evolution computing model is likely to develop into a powerful and promising computing framework. In this study, we will try to analyze the computation mechanism of evolution simulation system on the basis of attainability, explore to build the basic theory and method of the clustering evolut
英文关键词: clustering evolution computing;attainability analysis;engineering optimization;evolutionary algorithm;