项目名称: 低维半导体结构的自旋轨道耦合和自旋霍尔效应的自旋光电流研究

项目编号: No.61306120

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 俞金玲

作者单位: 福州大学

项目金额: 25万元

中文摘要: 圆偏振光致电流及其光谱是研究半导体自旋轨道耦合的有力工具,而光致反常霍尔电流及其光谱是一种研究自旋霍尔效应非常有效方便的新型光电测试技术。本项目通过将圆偏振光致电流和光致反常霍尔电流及其光谱相结合,研究结构参数、界面对称性、单轴和双轴应变、电场对自旋轨道耦合以及自旋霍尔效应的影响。通过栅压调控自旋轨道耦合强度大小和载流子浓度,以及比较n、p型调制掺杂以及无掺的量子阱样品,研究载流子浓度和类型对圆偏振光致电流和光致反常霍尔电流的影响,探索对自旋轨道耦合进行有效调控的方法,探究自旋霍尔效应的主导机制为本征机制还是非本征机制。通过变温、变波段圆偏振光致电流光谱和光致反常霍尔电流光谱测试,以及比较分析n、p型调制掺杂以及无掺的量子阱样品的自旋光电流光谱,研究激子效应对自旋轨道耦合、自旋分裂以及自旋霍尔效应的影响,探索激子效应在自旋光电子器件的可能应用。

中文关键词: 圆偏振光致电流;光致反常霍尔电流;自旋霍尔效应;自旋轨道耦合;激子效应

英文摘要: Circular photogalvanic effect (CPGE) and its spectra are powerful tools to investigate the spin orbit coupling of semiconductors, while photoinduced anomalous Hall effect (PAHE) and its specta are new and convenient photoelectric technologies to investigate the spin Hall effect of semiconductors. By combining these two technologies, we study the influence of the design of the structure, asymmetry of the interfaces, uniaxial and biaxial strain and the electric field on the spin orbit coupling and the spin Hall effect. By tunning the strength of spin oribt coupling and the concentration of the carriers by the gate voltage, and by comparing the signals detected in n-,p-doped and undoed quantum wells, we investigate the influence of these factors on CPGE and PAHE, thus to find out effective ways to tune the spin oribt coupling, and explore the dominant mechanism of the spin Hall effect is intrinsic or extrinsic. By measuring the CPGE and PAHE specta of semiconductor quantum wells with n-, p-doped and undoped under different temperatures or at different wavelength region (for example, wavelength for inter-band or inter-subband transition), we investigate the influence of the excitonic effect on the spin orbit coupling, spin splitting and spin Hall effect, thus to explore the possible application of the excitonic eff

英文关键词: Circular photogalvanic effect;photo-induced abnormal Hall effect;spin Hall effect;spin-orbit coupling;excitonic effect

成为VIP会员查看完整内容
0

相关内容

【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
19+阅读 · 2020年3月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
小贴士
相关VIP内容
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
19+阅读 · 2020年3月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员