项目名称: Al-Zn-Mg合金拉扭复合微动疲劳行为及其微观机理研究

项目编号: No.51201143

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 金属材料学科

项目作者: 蒋小松

作者单位: 西南交通大学

项目金额: 25万元

中文摘要: 由高速列车关键部件普遍存在的微动疲劳问题,对高速列车关键材料之一的Al-Zn-Mg合金进行系统的拉压微动疲劳和拉扭复合微动疲劳试验,对其在微动疲劳过程中的细微观结构进行观察。通过设计点接触条件下的微动疲劳试验装置实现拉压和拉扭复合微动疲劳,对其进行建模与接触力学数值模拟,分析应力幅值对材料的拉压和拉扭复合微动疲劳特性及寿命的影响。在数值模拟、宏观试验和微观试验结果相结合的基础上,综合运用摩擦学和疲劳的研究方法,研究拉压和拉扭复合微动疲劳失效的特点及其机制,揭示在微动疲劳过程中微动磨损和疲劳的竞争关系;研究Al-Zn-Mg合金中的第二相与材料微动疲劳裂纹萌生与裂纹扩展的关系;建立材料的微观组织演变规律及微动疲劳损伤的微观机制。Al-Zn-Mg合金拉扭复合微动疲劳特性及其微观机理的研究,为提高我国高速高速列车关键部件铝合金的应用水平,建立材料的评价方法和技术,以及其安全使用具有重要的意义。

中文关键词: Al-Zn-Mg合金;微动磨损;微动疲劳;拉扭复合;微结构

英文摘要: Due to fretting fatigue widely exists in the key components of high speed train, tension-compression and combined axial torsional fretting fatigue tests are systematically performed for Al-Zn-Mg alloy which is one of the main materials used for high speed train, the change of dislocation configuration of Al-Zn-Mg alloy is researched. Fretting fatigue test apparatus with point contact is set up to realize tension-compression and combined axial torsional fretting fatigue, ANSYS finite element analysis is used to analyze stress distribution by numerical study using 2D and 3D finite element method, fretting fatigue characteristic and lives of Al-Zn-Mg alloy are intensively analyzed. Based on finite element analysis, macroscopic and microscopic experiments with tribology and fatigue research methods, fretting regions morphology and fretting fatigue fracture behavior are analyzed to realize fretting fatigue characteristic and mechanism, competitive relation between fretting corrosion and fatigue are discussed. The second phases of Al-Zn-Mg alloy due to fretting effect have a certain impact on the fretting fatigue properties so that the microstructure of material significantly affects fracture behavior. Fretting fatigue behavior and microstructure mechanism are investigated. Research on Al-Zn-Mg alloy combined axial to

英文关键词: Al-Zn-Mg alloy;fretting abrasion;fretting fatigue;combined axial torsional;microstructure

成为VIP会员查看完整内容
0

相关内容

专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
43+阅读 · 2020年12月8日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
34+阅读 · 2020年11月26日
【干货书】Python数据科学分析,413页pdf
专知会员服务
90+阅读 · 2020年8月22日
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
你用过最久的数码产品是什么?
ZEALER订阅号
0+阅读 · 2021年12月5日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
32+阅读 · 2021年3月8日
小贴士
相关主题
相关VIP内容
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
43+阅读 · 2020年12月8日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
34+阅读 · 2020年11月26日
【干货书】Python数据科学分析,413页pdf
专知会员服务
90+阅读 · 2020年8月22日
相关资讯
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
你用过最久的数码产品是什么?
ZEALER订阅号
0+阅读 · 2021年12月5日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员