项目名称: 宽带多通道复杂电子信号实时捕获方法研究

项目编号: No.61301263

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 曾浩

作者单位: 电子科技大学

项目金额: 26万元

中文摘要: 科学研究和重大工程中经常测试诸多带宽极高、波形特征丰富的电子信号,如深空探测、模拟核爆、战场环境中产生的瞬态信号等。提高采样率和处理速度是实现宽带复杂信号实时捕获的关键。目前国内多通道复杂信号实时捕获技术发展的主要瓶颈问题是:无法满足信号带宽急剧上升的器件水平和多路信号之间已接近系统时钟抖动的最高皮秒量级的精密同步要求。这些问题使得该技术成为测试领域公认的国际难题。针对这一难题,本项目拟通过规模化并行时间交替采样和自适应综合校正技术提高实时采样率,采用波形三维显示技术并革新采集系统的传统架构方式来提高瞬态复杂信号的波形捕获率,通过内嵌式相位校准和主动补偿技术提高多通道信号采集同步的精度,从而实现复杂电子信号实时捕获水平的大幅提高。本课题系统级的革新将打破国外机构芯片技术上的垄断,可以弥补国内元器件发展水平滞后对整机造成的影响。

中文关键词: 时域测试;并行采样;波形捕获率;多通道高精度同步;

英文摘要: Scientific research and major projects exist a large number of complex transient signals, such as deep space exploration, simulated nuclear explosion, the radar echo in battlefield environment. This kind of complex signals have the characteristics of very high bandwidth and rich waveform components. To improve the sampling rate and processing speed is the key to realize the broadband signal real-time acquisition. Now, the main bottleneck problem of the research on the multi-channel complex signals real-time capture in the domestic lies in these two aspects: the device level is unable to cope with the signal bandwidth's sharp rising, and the requirements of synchronous precision, which is reached picoseconds orders in multi-channel signals, is close to the system clock jitter. These outstanding contradictions make the technology become to an accepted international problems in measurement field. In view of these problems, this project will take three methods to greatly improve the level of complex signals capturing in real-time. Firstly, it will use large-scale parallel time-interleaved sampling method and the technolgy of adaptive correction to increase the sampling rate. Secondly, it will adopt the technical of three-dimention waveform display and the innovation of traditional architecture to improve the real-t

英文关键词: time-domain test;parallel sampling;waveform capture rate;multi-channel precision synchronization;

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
21+阅读 · 2021年10月9日
专知会员服务
18+阅读 · 2021年6月29日
2021年中国人工智能在工业领域的应用研究报告(附报告)
专知会员服务
14+阅读 · 2021年3月26日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
14+阅读 · 2020年12月12日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
从ICCV 2021看夜间场景自监督深度估计最新进展
PaperWeekly
0+阅读 · 2021年10月14日
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
15+阅读 · 2019年6月25日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
21+阅读 · 2021年10月9日
专知会员服务
18+阅读 · 2021年6月29日
2021年中国人工智能在工业领域的应用研究报告(附报告)
专知会员服务
14+阅读 · 2021年3月26日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
14+阅读 · 2020年12月12日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员