项目名称: 基于反应型筛网的界面聚合正渗透膜的设计与制备研究

项目编号: No.21306178

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 徐佳

作者单位: 中国海洋大学

项目金额: 25万元

中文摘要: 正渗透是国际上最前沿、最具潜力的脱盐和水净化技术,其核心是正渗透膜,但膜支撑层中内浓差极化严重降低了水通量,是该技术发展和应用的瓶颈。本项目以高水通量正渗透膜为研究目标,从具有良好支撑层结构的筛网出发,拟采用多巴/多巴胺自聚-复合技术进行表面改性,以提高筛网亲水性并使其带有与酰氯反应的活性基团,然后以胺类为水相、酰氯为油相,进行界面聚合,首次制备以筛网为支撑层的聚酰胺正渗透膜。通过调整筛网结构、性质和界面聚合条件来获得完整性、均匀性和强度均优且与筛网牢固结合的皮层;根据膜结构表征和传质性能测试,揭示膜制备工艺、膜结构和膜性能的内在联系,得到较为成熟的膜制备技术;剖析筛网表面界面聚合皮层生长机制,以指导和优化膜设计和制备。本项目所研制的正渗透膜有望充分结合并发挥筛网和超薄皮层的优势,以最大程度降低内浓差极化,在保持优良脱盐率的同时显著提升水通量,其成功研制将为高性能正渗透膜的开发开辟新路径。

中文关键词: 正渗透;高通量;筛网;薄层复合膜;界面聚合

英文摘要: Forward osmosis (FO) technology is advanced and potential in the field of water purification and desalination. FO membrane as a key technology is limited by the low flux largely due to the internal concentration polarization (ICP) in support layer. This application aims to fabricate a high-flux FO membrane through interfacial polymerization (IP) on the surface of screen mesh as a support to largely decrease ICP and significantly increase flux. In this application, screen mesh was modified by DOPA/Dopamine self-polymerization technology and further grafting to improve the surface hydrophilicity and create organic groups on surface which can react with acyl chloride. Afterwards, the modified mesh was impregnated in aqueous phase containing amine with surfactant followed by immersed in organic phase containing acyl chloride, where the polyamide active layer was formed on the mesh surface. By adjusting the mesh structure and property as well as the IP conditions, the FO membrane with a good uniform, defect-free and mechanical strength active layer will be obtained. Combined with membrane characterization and separation performance, the interrelationship of membrane fabrication process, membrane structure and membrane performance will be revealed. The mechanism of the formation of active layer on the mesh surface wil

英文关键词: Forward osmosis;High flux;Mesh;Thin-film-composite membrane;Interfacial polymerization

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
24+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
19+阅读 · 2021年5月1日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
29+阅读 · 2020年3月16日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
24+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
19+阅读 · 2021年5月1日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
相关资讯
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
29+阅读 · 2020年3月16日
微信扫码咨询专知VIP会员