项目名称: 基于纳米压印技术类多孔阳级氧化铝纳米结构LED的研究

项目编号: No.61474048

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 徐智谋

作者单位: 华中科技大学

项目金额: 80万元

中文摘要: 研究自主创新的大功率纳米结构发光二极管(LED)芯片技术,对解决国外专利封锁具有积极意义。实现纳米结构LED器件的最大挑战是如何低成本制备。我们基于纳米压印技术和阳极氧化铝(AAO)纳米结构,提出实现类AAO纳米孔、纳米柱和纳米圆台等结构LED新方案。采用Rsoft软件和时域有限差分等方法,建立数学模型研究类AAO纳米结构参数对LED器件性能的影响规律,探索类AAO非严格周期结构提升LED量子效率理论机制,解决类AAO纳米结构参数的优化设计问题;研究多层掩膜纳米压印技术,实现非平整表面大面积类AAO纳米结构的制备;研究以类AAO纳米孔和纳米柱结构硅模板为原始模板,纳米图形化蓝宝石衬底(NPSS)LED和p-GaN层表面光子晶体(PC)LED压印制备关键技术;研究NPSS衬底表面横向外延生长工艺及测试评价,最终制备出内外量子效率同时得以提升的NPSS-PC-LED器件。

中文关键词: 发光二极管;纳米压印;类多孔阳极氧化铝;纳米结构

英文摘要: The study of high power nanostructure light-emitting diodes (LEDs) with self-dependent innovation is of great significance to solve the block of foreign patents. However, the fabrication cost has become the bottleneck of nanostructured LED application. In this project, we will propose a new way to fabricate LEDs with the nanostructure such as the similar AAO nanopore, nanopillar and circular truncated cone by nano-imprint lithography (NIL) technology combined with anodic aluminum oxide (AAO) mask. Based on the Rsoft simulator and finite-different time-domain (FDTD) analysis method, we will study the influence of the similar AAO structure parameters on LED performance, the theory of the improvement of LED quantum efficiency base on the non-periodicity of the similar AAO nanostructures, the optimization of the similar AAO nanostructures. A multi-mask-layer NIL will be proposed to fabricate the similar AAO nanostructures on the nonflat surfaces with large scale pattern area. The key technology that nano-patterned sapphire substrate (NPSS) LED and photonic crystal (PC) LED on p-GaN layer are fabricated by NIL based on the similar AAO nanopore and nanopillar shaped Si molds will be studied. The epitaxy lateral overgrowth technology on the NPSS substrate and test evaluation will be also investigated. We will finally fabricate the NPSS-PC-LED devices with improved performance in both the internal quantum efficiency and the external quantum efficiency.

英文关键词: LED;nano-imprint;similar porous anodic aluminum oxide;nano-structure

成为VIP会员查看完整内容
0

相关内容

基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
103+阅读 · 2020年11月27日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
华为新机曝光:麒麟芯片,有 5G!
ZEALER订阅号
0+阅读 · 2022年2月18日
小米卷轴屏手机已在路上?
ZEALER订阅号
0+阅读 · 2021年12月19日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关VIP内容
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
103+阅读 · 2020年11月27日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员