项目名称: 微相可控的磺化聚苯并咪唑嵌段聚酰亚胺质子交换膜的设计及性能研究

项目编号: No.51303134

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 潘海燕

作者单位: 同济大学

项目金额: 25万元

中文摘要: 本项目设计并制备一种新型的具有可控微相分离结构的磺化聚苯并咪唑嵌段聚酰亚胺共聚物,并研究其在质子交换膜中的应用。研究内容是将磺化聚苯并咪唑与聚酰亚胺嵌段共缩聚,共聚物的化学组成、嵌段长度和各嵌段的体积分数等参数通过理论计算预先设计并调整,同时优化成膜工艺和外加电场,以此控制制备的共聚物在薄膜状态时的微相分离结构;研究不同的微相分离结构与质子传输通道的构建以及质子传导性能的影响机制,建立微相分离结构与质子交换膜性能的关系。本项目结合分子工程与聚合物工程,通过理论计算的方法预先设计出可能的嵌段共聚物的微相分离结构,得到的质子交换膜一方面能将聚苯并咪唑与聚酰亚胺的优点相结合;另一方面可控微相分离结构的形成,有利于质子传输通道的构建;材料与结构的结合可以提高质子交换膜的机械性能、水解稳定性、导电性能等。本研究将为控制合成具有特定微观形态的质子交换膜提供一个研究思路,且制备的膜材料有重要的应用价值。

中文关键词: 质子交换膜;磺化聚苯并咪唑;聚酰亚胺;嵌段聚合物;微相分离

英文摘要: This project is about the design and preparation of a novel sulfonated polybenzimidazole-block-polyimide with controlled microphase separation structure, and studies its application in proton exchange membrane.The research contents include: Synthesis of the sulfonated polybenzimidazole-block-polyimide copolymer. The parameters of the chemical composition, block length and the volume fraction of each block are designed and adjusted by theoretical calculation. Optimize the membrane preparation process and introduce the external electric field in order to control the microphase separation structure of the block copolymer in the film state. Study the influence mechanism of the microphase separation structure, proton transport channel construction and proton conduction performance to get the relationship between microphase separation structure and properties of proton exchange membranes.The project combines the molecular engineering and polymer engineering, pre-designs the block copolymer with possible microphase separation structure by theoretical calculation. On the one hand, the obtained proton exchange membrane can exhibit the advantages of polybenzimidazole and polyimide; on the other hand, the formation of the controlled microphase separation structure is conducive to building the proton transfer channel. The c

英文关键词: Proton exchange membrane;Sulfonated polybenzoimidazole;Polyimide;Block polymer;Microphase separation

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
13+阅读 · 2022年3月18日
【新书】基于物理的深度学习,220页pdf
专知会员服务
150+阅读 · 2021年9月15日
专知会员服务
60+阅读 · 2021年8月24日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
软件分析与设计:分析什么?如何设计?
阿里技术
0+阅读 · 2021年12月23日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
外泌体行业规模2030年预计将达22.8亿美元
外泌体之家
18+阅读 · 2019年3月26日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
3+阅读 · 2022年5月26日
Arxiv
0+阅读 · 2022年5月26日
Arxiv
0+阅读 · 2022年5月26日
Arxiv
0+阅读 · 2022年5月26日
小贴士
相关主题
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
13+阅读 · 2022年3月18日
【新书】基于物理的深度学习,220页pdf
专知会员服务
150+阅读 · 2021年9月15日
专知会员服务
60+阅读 · 2021年8月24日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
相关基金
微信扫码咨询专知VIP会员