项目名称: 紫外有机电致发光二极管中的空间电荷累积效应和激子调控研究

项目编号: No.61275041

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 魏斌

作者单位: 上海大学

项目金额: 75万元

中文摘要: 紫外发射可用于固化、消毒、水处理、医疗以及全彩显示等广泛领域,目前市场上常用的汞灯和卤素灯紫外光源寿命短、耗能大,工作时容易产生臭氧污染,因此发展新一代节能、环保紫外光源具有重要的现实意义。紫外有机电致发光二极管(UV OLED)具有面发射、低驱动电压、高效率和低成本等优势,而且其发射光谱可以根据实际的需要,利用各种各样的分子设计以及通过发光层主客掺杂浓度的变化来实现,无论从理论还是应用角度都引起越来越多的重视。该项目通过调查UV OLED中载流子陷阱密度的电场依存性以及空间电荷界面的累积效应,调控不同施加电压下的激子形成区,从而改善载流子平衡、降低界面累积电荷产生的紫外发光器件老化。此外,从光-电转换机理上分析电极和有机材料对紫外光的本征吸收,以及高电流密度下光诱导的激子淬灭,提出解决降低效率滚降的途径,最终提出开发高效率和长寿命的实用化UV OLED器件的方案。

中文关键词: 紫外;有机电致发光二极管;载流子注入;梯度掺杂;激基缔合物

英文摘要: The ultraviolet (UV) emission can be widely used in curing, disinfection, water treatment, medical care, and full-color display. Currently, mercury and halogen lamps as main UV light sources are of disadvantages of short life, high energy consumption, ozone pollution at operation. So the development of a new energy-saving and environmentally friendly UV light source has important practical significance. The UV organic light-emitting diodes (OLEDs) have the merits of surface-emitting, low drive voltage, high efficiency and low cost; furthermore, their emission spectra can be controlled through a variety of molecular design or through change by a doping concentration of guest in host in the light-emitting layer. This project aims at enhancing carrier balance and reducing device degradation by investigating the field-dependent carrier-trapped density and accumulation effect of space charge in interface, and managing the location of the exciton recombination region in UV OLED under different applied bias. In addition, we will propose solution to reduce the efficiency roll-off by studying the intrinsic absorption of the electrodes and organic materials, as well as light-induced exciton annihilation under high current density from the optical-electrical conversion mechanism, and ultimately develop high-efficiency and

英文关键词: Ultravoilet;Organic light-emitting diodes;carrier injection;Gradient doping;Exciplex

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
38+阅读 · 2021年7月5日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
38+阅读 · 2021年7月5日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员