项目名称: 钼离子掺杂与竞争吸附双机制调控钨青铜纳米晶的形貌与光学性能
项目编号: No.51502194
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 一般工业技术
项目作者: 康利涛
作者单位: 烟台大学
项目金额: 21万元
中文摘要: 钨青铜纳米晶因其丰富的光电功能特性和广阔的应用前景成为当前功能氧化物的研究热点。其中,晶体能带结构与形貌显著影响其本征和等离子体共振光吸收,是优化光学性能的关键。为解决钨青铜形貌、能带调控机制单一问题,本项目拟采用水热工艺制备钨青铜纳米晶,利用钼、钨离子结构与性质的相近性,通过钼掺杂调节钨青铜禁带宽度与本征吸收,提高可见光透光率;同时利用钼离子在纳米晶表面的竞争吸附,减少钨离子的吸附几率,控制生长速率,调节晶体形貌,优化近红外光吸收特性。本项目首先通过分析纳米晶成分、物相、形貌与光学性能变化,研究钼离子种类、浓度对钨青铜禁带宽度与光吸收特性的影响规律,进一步探讨纳米晶形貌、成分与光学性能间的构效关系;然后结合光谱分析,利用第一性原理计算构建离子竞争吸附模型,优化吸附过渡态,确定动力学参数,阐明钼离子影响纳米晶形貌的内在机制。项目旨在为开发新型节能涂层与光热转换剂提供新方法与新机理。
中文关键词: 钨青铜;纳米晶;水热法;选择透光性;竞争吸附
英文摘要: Tungsten bronze nanocrystals emerge as a hot topic in the study of functional oxides, owing to their rich optical- and electrical-functionalities and thereby wide application prospects. Particularly, the light absorption caused by intrinsic and localized surface plasma resonance (LSPR) absorption renders the fundamental for the optical functionality. According to study of known, the intrinsic and LSPR light absorption are strongly influenced by band and micro- structures of crystals, respectively. In order to enrich the microstructures and band structure regulation approaches for tungsten bronzes, this project intends to prepare tungsten bronze nanocrytals by a clean hydrothermal method, and then molybdenum ions will be introduced into the hydrothermal reaction system, in order to substitutionally replace tungsten ions by molybdenum ions in the crystal and widen its band gap, then depress the intrinsic absorption and thus bloom its visible transmittance. Utilizing the structure and physicochemical similarity of molybdenum and tungsten ions, the growth of tungsten bronze crystals should be slow down due to the competitive adsorption of molybdenum ions onto the crystal surface against tungsten ions. Therefore, the morphologies and optical properties of crystals will be optimized. Experimentally, this project will firstly clarify the influences of the kind and concentration of molybdenum ions on the component, phase, and morphology of the tungsten bronze nanocrystals. Then, based on the FTIR and Raman spectra analyses, a primary atomic model will be built with Materials Studio V5.5 software to describe the adsorption process. After the optimization of adsorption transition state, the kinetic parameters of adsorption will further be determined via a first principle calculation manner. Finally, a physical mechanism is expected to be extracted to explain the relationship between the kind and concentration of molybdenum ions and the component, phase, and morphology charge of corresponding tungsten bronze nanocrystals. This project aims to reveal the influence of typical inorganic ions on the morphology and optical properties of tungsten bronze nanocrystals, and therefore provide new ways and/or mechanisms for the development of novel energy-efficient coatings and photothermal agent for near-infrared laser-induced photothermal ablation of cancers.
英文关键词: Tungsten bronze;nano-crystal;hydrothermal;spectrum selectivity;competitive adsorption