项目名称: 具有自修复功能和耐摩擦磨损性能的超疏水材料制备及性能增强研究

项目编号: No.21473132

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 屈孟男

作者单位: 西安科技大学

项目金额: 82万元

中文摘要: 本项目基于目前人工制备的超疏水表面存在机械稳定性、持久性及实用性较差等现状,拟以深入模仿自然界中超疏水表面的自修复能力和能够长期维持表面低自由能这两个重要因素为策略,通过制备恰当的疏水聚合物和具有自愈合功能的超分子为主要材料,利用掺入各类微纳米颗粒或包覆有低表面能化合物的微容器来构筑表面微纳米粗糙结构。当材料表面受到摩擦磨损时,利用基材疏水聚合物以及超分子材料的自愈合形成新生表面,通过从内部暴露出来的微纳米颗粒或破裂的微容器来增加材料表面的粗糙度和低自由能,从而获得材料表面超疏水性能的自修复。此外本项目欲通过研究材料的超疏水自修复性能和其化学组成、微观形态及内部结构等因素之间的关系,揭示广泛的构效规律,为全面仿生制备各类具有自修复性能的超疏水材料提供依据。本项目通过研究超疏水材料的耐摩擦磨损性和自修复性能,对持久性超疏水材料的制备具有一定的理论研究和应用价值。

中文关键词: 超疏水性;微纳米结构;自修复性;机械持久性;表面自由能

英文摘要: This proposal is based on that the current artificial superhydrophobic surfaces have the disadvantages of poor mechanical stability, durability and application, and going to take the strategy that mimicking the ability of self-repairing and the ability of sustaining low surface energy of naturesuperhydrophobic surfaces completely. The polymer with proper flexible and rigidity, and the self-healing supermolecule materials will be synthesised and used as the fundamental materials. The micro-, nano-particles and the micro-capsule which contains the low surface energy compound will be added to fabricate the the microscopic roughness that are necessary for superhydrophobicity. The material surface will be regenerated by the wear of the polymer and the self-healing ability of the supermolecule materials when the surface endures scrub and friction. The micro-capsules will be broken and form a new microscopic roughness. At the same time, the low surface energy compounds inside the capsules flows out and re-modify the surface. Thus a new superhydrophobic surface is regenerated and self-repaired. Furthermore, this proposal is also going to investigate the correlationship between the self-repairing ability and the chemical composition, microstructure morphology and internal structure, and find out the universal structure-activity relationship.

英文关键词: superhydrophobicity;micro-;nano-structure;self-healing;mechanically durability;surface free energy

成为VIP会员查看完整内容
0

相关内容

人工智能到深度学习:药物发现的机器智能方法
专知会员服务
36+阅读 · 2022年5月6日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
已删除
将门创投
10+阅读 · 2018年5月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月18日
Arxiv
20+阅读 · 2019年9月7日
小贴士
相关主题
相关VIP内容
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
36+阅读 · 2022年5月6日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
相关资讯
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
已删除
将门创投
10+阅读 · 2018年5月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员