项目名称: 总广义变差在图像恢复中的建模理论及其算法研究

项目编号: No.61301229

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 郝岩

作者单位: 河南科技大学

项目金额: 24万元

中文摘要: 总变差和偏微分方程在图像处理中已经得到广泛应用,然而总变差和高阶偏微分方程方法存在下面两个问题:(1)总变差易导致阶梯效应;(2)高阶偏微分方程方法易导致图像的边缘和细节丢失,从而引起图像模糊。本项目计划通过建立自适应的总广义变差模型和非局部总广义变差模型等解决上述两个基本问题。总广义变差不同于总变差,它是一个全新的数学概念,是当前图像处理和应用数学研究的热点。本项目将对总广义变差正则方法进行深入、全面地研究,创新之处在于:(1)建立新的自适应总广义变差图像恢复模型;(2)建立非凸总广义变差和稀疏正则相结合的图像恢复模型;(3)建立非局部总广义变差图像恢复模型。另外,我们将给出新方法在图像恢复(去噪、去模糊、修复、分解等)问题上的应用。本课题预期在理论上有突破,方法和技术上有创新,为该方法的实际应用奠定基础。

中文关键词: 总广义变差;图像去噪;图像放大;图像分解;图像修复

英文摘要: Total variation and partial differential equation methods have been widely applied to image processing. However, the methods of total variation and high order partial defferential equation have two problems: one is that total variation can lead to staircase effects, the other is that high order partial diffenential equation methods can make some edges and details lost, so the restored image looks blurry. For solving the two problems above, in this project, we plan to construct the adaptive models and nonlocal models based on total generalized variation. Differt from total variation, the total generalized variation is a novel concept, and it is the research hotspot of image processing and applied mathematics. The novelty of this project lies in the following several aspects: firstly, the new adaptive total generalized variation based image restoration models will be constructed; secondly, the nonconvex total generalized variation regularization models with sparse representation low-rank constraint for image restoration will be introduced; lastly, in order to remove the nosie of the texture images effectively, a nonlocal total generalized variation based model will be proposed. In addition, the end of the project will give the application of new methods, which makes the results of image restoration more efficient.

英文关键词: total generalized variation;image denoising;image zooming;image decomposition;image inpainting

成为VIP会员查看完整内容
0

相关内容

专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
77+阅读 · 2020年12月6日
专知会员服务
45+阅读 · 2020年12月4日
专知会员服务
34+阅读 · 2020年11月26日
专知会员服务
219+阅读 · 2020年8月1日
专知会员服务
42+阅读 · 2020年7月29日
专知会员服务
107+阅读 · 2020年5月21日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
一文概括常用图像处理算法以及常用开发库
极市平台
1+阅读 · 2021年11月23日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
深度学习的图像修复
AI研习社
21+阅读 · 2019年3月28日
CVPR 2019 | 无监督领域特定单图像去模糊
PaperWeekly
14+阅读 · 2019年3月20日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
40+阅读 · 2018年4月26日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年1月14日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
11+阅读 · 2018年5月13日
小贴士
相关VIP内容
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
77+阅读 · 2020年12月6日
专知会员服务
45+阅读 · 2020年12月4日
专知会员服务
34+阅读 · 2020年11月26日
专知会员服务
219+阅读 · 2020年8月1日
专知会员服务
42+阅读 · 2020年7月29日
专知会员服务
107+阅读 · 2020年5月21日
相关资讯
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
一文概括常用图像处理算法以及常用开发库
极市平台
1+阅读 · 2021年11月23日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
深度学习的图像修复
AI研习社
21+阅读 · 2019年3月28日
CVPR 2019 | 无监督领域特定单图像去模糊
PaperWeekly
14+阅读 · 2019年3月20日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
40+阅读 · 2018年4月26日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员