项目名称: 新型铁基光伏材料性能研究与器件探索

项目编号: No.61204072

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 王耀明

作者单位: 中国科学院上海硅酸盐研究所

项目金额: 26万元

中文摘要: 太阳电池的大规模应用还面临成本过高的问题,开发新型廉价光伏材料,提高光吸收系数,将大幅减少材料用量和降低成本。本项目围绕光吸收系数极高的FeS2进行改性研究、结构剪裁和光电性能优化,在保持高吸光特性的同时,开发出结构稳定、电荷输运性能优异的新型铁基光伏材料。主要研究内容如下:(1)FeS2掺杂改性与表面修饰。利用表面强键的绑定作用和高S化学势修饰层的抑制作用,稳定FeS2表面的S亚晶格,克服费米能级钉扎效应。(2)FeS2晶格结构剪裁。保持FeS2骨架结构和费米面附件电子结构基本不变,在FeS2的晶格中直接引入与S强力键合的元素Al, Ga, Si, Ge等,形成自然共存的结构单元,避免材料的亚晶格失稳。(3)铁基光伏材料的薄膜制备与器件探索。优选性能优异的铁基光伏材料,进行薄膜化制备研究,并参考典型的化合物薄膜光伏器件结构,探索铁基光伏器件的集成。

中文关键词: 新型光伏材料;铁基光伏材料;钙钛矿光伏材料;低成本;

英文摘要: Ultra-large-scale application of solar cells is prohibited by the problem of high cost. The development of novel low-cost, highly absorptive photovoltaic materials, will significantly reduce the need of raw material and cost. This project is aimed to develop novel low-cost Fe-based photovoltaic materials with great structural stability and excellent charge transport properties, by surface modification and structural tailoring the highly absorptive FeS2. The main contents are as follows: (1) FeS2 performance enhancement by doping and surface modification. Introducing strong chemical bond in FeS2 surface to bind S and modifying suface by high-S chemical potential layer, to stabilize the S-sublattice, overcoming the effect of Fermi level pinning. (2) FeS2 lattice structural tailoring. Maintain the FeS2 skeleton crystal structure and electronic structure near Fermi level, directly introducing Al, Ga, Si and Ge, which can be strongly bonded to S, into the lattice of FeS2, forming naturally coexisted structural units, to avoid the sub-lattice instability. (3) Fabrication of Fe-based thin films and devices. Optimize the performance of Fe-based photovoltaic materials, deposit thin films, and fabricate devices, refering to the typical compound thin film photovoltaic device structure.

英文关键词: Novel photovoltaic materials;Fe-based photovoltaic materials;Perovskite photolvaic materials;Low-cost;

成为VIP会员查看完整内容
0

相关内容

【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
15+阅读 · 2021年11月18日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
将热光伏发电效率提到40%,MIT新研究登上Nature
机器之心
0+阅读 · 2022年4月21日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Music Source Separation with Generative Flow
Arxiv
0+阅读 · 2022年4月26日
Arxiv
31+阅读 · 2021年6月30日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
12+阅读 · 2018年9月15日
小贴士
相关VIP内容
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
15+阅读 · 2021年11月18日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员