项目名称: 基于InGaAs/InP APD的高速近红外单光子探测系统研究

项目编号: No.61275121

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 张军

作者单位: 中国科学技术大学

项目金额: 86万元

中文摘要: 基于InGaAs/InP雪崩光电二极管的单光子探测系统是进行近红外波段弱光探测的主要选择,在许多领域中得到了广泛的应用,尤其是量子密码和量子通信系统中的关键性器件。然而由于技术上的限制,采用传统方法的单光子探测系统计数率仅在几百kHz,这已经严重限制量子通信系统性能提升比如安全距离、最终密钥率等。因此,研发高速高计数率的InGaAs/InP单光子探测系统刻不容缓,这是目前量子通信领域激烈国际竞争的技术制高点。高速单光子探测研究中一个需要解决的关键科学问题是如何在有效抑制afterpulse效应的同时能够有效提取微弱雪崩信号。在本项目我们将从理论和实验上研究高速门控的机理,采用正弦门控与滤波技术实现高速单光子探测,在此基础上研制出集成化、小型化GHz频率的InGaAs/InP单光子探测系统原型样机,为未来研发下一代高速量子通信系统奠定坚实的技术基础。

中文关键词: 单光子探测器;雪崩光电二极管;高速门控;量子通信;量子密码

英文摘要: InGaAs/InP avalanche photodiode (APD) based single-photon detection system is a reliable and practical solution for ultraweak optical detection in the near infrared, which has been extensively applied in many different fields, particularly in quantum cryptography and quantum communication system. However, due to the limits of quenching techniques,the saturated count rate of conventional InGaAs/InP single-photon detector system is only around hundreds of kHz. That significantly limits the performance improvement of quantum communication system in terms of secure communication distance and final key rate. Therefore, developing high-speed InGaAs/InP single-photon detector system with high saturated count rate is urgently required, which is also the key point in the field of quantum cryptography presently. The key scientific question of high-speed single-photon detection is how to effectively suppress the afterpulsing effect while effectively extract weak avalanche signals.In this project, we will study the mechanism of high-speed gating theoretically and experimentally. With the technique of sine wave gating and filtering, we can implement high-speed single-photon detection and further develop a fully integrated and compact InGaAs/InP single-photon detector system with GHz frequency gating. Our project will definit

英文关键词: single-photon detector;avalanche photodiode;high-frequency gating;quantum communication;quantum cryptography

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
61+阅读 · 2022年3月20日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
87+阅读 · 2021年3月3日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
14+阅读 · 2021年3月10日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
61+阅读 · 2022年3月20日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
87+阅读 · 2021年3月3日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员