项目名称: 新型电泵浦有机蓝光微腔激光器件及特性研究

项目编号: No.61275147

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 王文军

作者单位: 聊城大学

项目金额: 68万元

中文摘要: 有机半导体激光器(OSL)容易与其他光电子器件集成在一起,尤其是蓝光微腔激光器件在激光信息显示和高容量光盘等方面有广泛的应用。本课题拟进行电泵浦的多层增益介质和由一维光子晶体构成微谐振腔的有机蓝光激光器件及特性研究。以光子晶体作为微腔,通过采用多层增益介质、掺杂一些活泼金属、金属氧化物、纳米石墨烯、氧化石墨烯等措施来提高电子和空穴的迁移率,使电子和空穴的迁移率基本平衡,提高有机激光的发光效率;以聚芴类衍生物及相关有机材料作为激光多层增益介质。研究微腔结构、电子传输层、有机材料的分子结构、时间特性、泵浦电压与激光的量子效率、模式、阈值、谱线宽度等之间的关系;重点研究多层增益介质、掺杂等方式提高电子和空穴的迁移率进而提高激光量子效率、以及光子晶体微谐振腔的设计和制备、电子传输层、增益介质与激光发射特性的关系。制备出具有高效率的电泵浦光子晶体微腔有机蓝光激光器件。

中文关键词: 光子晶体微腔;有机蓝光激光器件;电子和空穴迁移率;发光效率;电子传输层

英文摘要: The organic semiconductor lasers (OSL) easily and other optoelectronic devices are integrated together, the blue microcavity laser device in laser display and high capacity optical disc and others have wide application especially. In this program, the organic blue laser devices and characteristics with electrically pumped and multilayer gain medium and one-dimensional photonic crystal microcavity will be studied. In order to improve the luminous efficiency of organic lasers, we will use a multilayer gain medium and a photonic crystal microcavity. Also in order to improve the mobility of electrons and holes and maintaining the electron and hole mobility basic balance, some of the active metal, metal oxide, nanometer graphene, graphene oxides will be doped. The multi-layer laser gain medium of organic laser will use poly fluorene derivatives and related organic materials. The relationship of the microcavity structure, an electron transport layer, molecular structure of organic materials, pumping voltage with the laser quantum efficiency, model and threshold and the width of spectral line of the lasers will be studied. The high efficiency electric pumped photonic-crystal microcavity organic blue laser devices would have been prepared.

英文关键词: Photonic crystal microcavity;Organic blue laser device;Electron and hole mobility;Luminous efficiency;Electron transfer layer

成为VIP会员查看完整内容
0

相关内容

车联网白皮书,44页pdf
专知会员服务
79+阅读 · 2022年1月3日
专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
20+阅读 · 2021年9月14日
专知会员服务
105+阅读 · 2021年8月23日
专知会员服务
37+阅读 · 2021年7月8日
专知会员服务
66+阅读 · 2021年7月4日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
103+阅读 · 2021年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员