项目名称: 时标上复数神经网络的单稳定性和多稳定性研究

项目编号: No.61273021

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 宋乾坤

作者单位: 重庆交通大学

项目金额: 61万元

中文摘要: 复数神经网络已广泛应用于优化计算、图像处理、模式识别等诸多领域,稳定性是其应用的先决条件。本项目采用时标理论,把连续时间型和离散时间型两类复数神经网络模型统一成时标上复数神经网络模型,研究其单稳定性和多稳定性问题。通过构造时标上时滞复数神经网络的比较系统,建立比较原理;基于Hermite二次型的能量函数方法,建立时标上时滞复数神经网络单稳定性的一系列判定条件。关于时标上时滞复数神经网络多稳定性的研究,我们将根据网络激励函数的几何特征,把网络状态空间分割成多个子集,并严格分析每个子集中平衡点的存在性、唯一性和稳定性,探究网络不稳定点的数目,给出网络不稳定的判定条件。基于建立的时标上时滞复数神经网络稳定性理论,研究两个时标上时滞复数神经网络的同步性问题,通过设计控制器,建立一系列同步性判定条件。本项目的完成,将丰富和发展神经网络动力学理论,为复数神经网络的进一步应用提供理论支持。

中文关键词: 复数神经网络;稳定性;多稳定性;同步性;时标

英文摘要: The complex-valued neural networks have been widely applied within many fields such as optimization computation, images processing, pattern recognition. In such applications, it is of prime importance to ensure that the designed neural networks are stable. In this project, we will consider the complex-valued neural networks on time scales in order to unify the study of the discrete-time and contiguous-time complex-valued neural networks, and investigate the problems on the monostability and multistabilit for the complex-valued neural networks on time scales. By constructing the comparison system of the complex-valued neural networks on time scales, we will establish the comparison principle of stability for the complex-valued neural networks on time scales and its comparison system. Based on the energy function method of Hermite's quadric form, we will establish some criteria to ensure the monostability for the delayed complex-valued neural networks on time scales. On the study of multistabilit for the complex-valued neural networks on time scales, we will divide the whole state space into some subsets according to the geometrical configurations of activation functions, and strictly analyze the existence, uniqueness, and stability of equilibrium point in each subset. We will also probe into the numbers of the un

英文关键词: Complex-valued neural networks;Stability;Multi-stability;Synchronization;Time scales

成为VIP会员查看完整内容
0

相关内容

神经网络首看书《神经网络与机器学习》,中英文版本
专知会员服务
138+阅读 · 2021年12月25日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
深度学习激活函数全面综述论文
专知会员服务
70+阅读 · 2021年10月1日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
28+阅读 · 2020年10月24日
专知会员服务
28+阅读 · 2020年8月8日
专知会员服务
29+阅读 · 2020年7月31日
神经网络,凉了?
CVer
2+阅读 · 2022年3月16日
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
卷积神经网络数学原理解析
极市平台
1+阅读 · 2021年11月19日
微软2022校招网申截止倒计时1天!
微软招聘
0+阅读 · 2021年9月30日
训练技巧 | 功守道:NLP中的对抗训练 + PyTorch实现
PaperWeekly
12+阅读 · 2019年11月13日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
【深度学习基础】1.监督学习和最优化
微信AI
0+阅读 · 2017年6月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Communication Bounds for Convolutional Neural Networks
小贴士
相关VIP内容
神经网络首看书《神经网络与机器学习》,中英文版本
专知会员服务
138+阅读 · 2021年12月25日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
深度学习激活函数全面综述论文
专知会员服务
70+阅读 · 2021年10月1日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
28+阅读 · 2020年10月24日
专知会员服务
28+阅读 · 2020年8月8日
专知会员服务
29+阅读 · 2020年7月31日
相关资讯
神经网络,凉了?
CVer
2+阅读 · 2022年3月16日
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
卷积神经网络数学原理解析
极市平台
1+阅读 · 2021年11月19日
微软2022校招网申截止倒计时1天!
微软招聘
0+阅读 · 2021年9月30日
训练技巧 | 功守道:NLP中的对抗训练 + PyTorch实现
PaperWeekly
12+阅读 · 2019年11月13日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
【深度学习基础】1.监督学习和最优化
微信AI
0+阅读 · 2017年6月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员