项目名称: ZnS:Mn量子点嵌入SixGe1-x光子晶体复合结构的构筑及其光学特性研究

项目编号: No.61275047

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 孟祥东

作者单位: 吉林师范大学

项目金额: 75万元

中文摘要: 本项目研究SixGe1-x光子晶体对太阳光谱和ZnS:Mn量子点发光的复合调控和收集光子的物理机制,优化ZnS:Mn/SixGe1-x复合结构是获得高效硅叠层太阳电池的关键科学问题。本项目将胶体晶体自组装和离子液体中电沉积法相结合,提出原位构筑反蛋白石结构SixGe1-x三维光子晶体的新方法;在此结构的空隙处填充ZnS:Mn核壳量子点组装成ZnS:Mn/SixGe1-x的复合结构。研究SixGe1-x光子晶体在离子液体中共沉积过程的生长机理,分析沉积条件对硅锗合金能带结构的影响。研究利用椭偏仪测试和拟合获得硅锗合金膜的色散关系;基于有限时域差分法模拟计算SixGe1-x光子晶体的光谱特性。研究SixGe1-x光子晶体的光子带隙对ZnS:Mn量子点的发光强度、荧光寿命的调控效应;分析此复合结构对太阳光谱的利用效率。上述科学问题的研究,为研制新一代太阳能光伏器件提供理论依据和实验基础。

中文关键词: 量子点;光子晶体;非晶硅电池;离子液体;光致发光

英文摘要: In the project, studying the physical mechanism of light extraction and control of SixGe1-x photonic crystals for properties of ZnS:Mn quantum dots and solar spectrum and optimizing ZnS:Mn/SixGe1-x composite structure for enhanced high efficiency of silicon tandem solar cells are one of key scientific issues. The SixGe1-x three-dimensional photonic crystals are directly fabricated by colloidal crystal template-assisted electrodeposition method from ionic liquids and ZnS:Mn quantum-dot-based SixGe1-x composite materials are assembled by infiltration method. The growth mechanism of co-deposition process of SixGe1-x photonic crystals in ionic liquids is studied and the influence of deposition conditions on silicon germanium alloy band gap is discussed. The optical constants of SixGe1-x films are measured by Ellipsometer, based on an effective medium model for obtaining the dispersion relation of the SixGe1-x films. Further we study spontaneous emission from ZnS:Mn quantum dots embedded in SixGe1-x photonic crystals. The spectral distribution and time-dependent decay of light emitted from ZnS:Mn quantum dots are controlled by the host SixGe1-x photonic crystal. We will also optimize the ZnS:Mn/SixGe1-x photonic crystal intermediate reflector with inverse opal structure and make it satisfy the characteristic of selec

英文关键词: Quantum dots;Photonic crystals;Amorphous silicon solar cell;Ionic liquids;Photoluminescent

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
98+阅读 · 2021年4月30日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
56+阅读 · 2021年5月3日
Knowledge Representation Learning: A Quantitative Review
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员