项目名称: 基于光机晶体微腔片上量子基态的研究

项目编号: No.61307068

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 崔开宇

作者单位: 清华大学

项目金额: 28万元

中文摘要: 本申请项目将开展基于腔光机力学的片上量子基态的相关研究。不同于仅能实现单原子水平量子基态的激光冷却方案,利用腔光机力学可以实现宏观/介观尺度系统的量子基态,使得量子态的操控对象拓展到准粒子- - 声子,为实现片上系统的量子基态提供了可能的途径。可以预见,利用腔光机力学实现片上系统的量子基态,将引发量子控制、精密测量、量子信息领域研究的革命性飞跃。 本申请项目以光机晶体微腔实现片上量子基态的研究为目标,着眼于光机晶体微腔中光波/光子模式与机械振动/声子模式相互作用的丰富物理内涵,采用同时具有光子带隙和声子带隙的空气桥/悬臂微腔结构,在半导体材料上制备出高质量光机晶体微腔,并测试出光波模式与机械振动/声子模式的本征频率,形成从理论设计、工艺实现到测试技术的系统性创新研究。

中文关键词: 光机晶体;微腔;量子基态;声子;光力

英文摘要: The project will focus on the study of an optomechanical cavity for the realization of on-chip quantum ground state. Different from the method of laser cooling, achieving a single-atom level quantum ground state, a macro/meso-scopic quantum ground state can be realized by use of optomechanics, which expands the manipulated object of quantum states to the quasiparticle - phonon. Meanwhile, based on the advanced micro/nano-fabrication technologies, the quantum ground state of an on-chip system can be expected. Thus, the ultimate noise of quantum fluctuations of the on-chip system can be greatly suppressed. It can be predicted that the realization of on-chip quantum ground state by optomechanics will intrigue a revolution in the progress of quantum control, precision measurement, and quantum information. In this project, aiming at the realization of on-chip quantum ground state, we will firstly study the optomechanical cavity based on the backaction cooling theory in optomechanics. Here, the physical picture of the interaction between the optical mode (photon) and the mechanical mode (phonon) will be clarified. Then, by designing the air-bridge or cantilever microcavity structure with both photonic bandgap and phonon bandgap, high-Q factor optomechanical crystal cavity will be fabricated in semiconductor material.

英文关键词: Optomechanical crystals;microcavity;quantum ground state;phonon;Optomechanics

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
【经典书】图论,322页pdf
专知会员服务
122+阅读 · 2021年10月14日
专知会员服务
30+阅读 · 2021年10月12日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
94+阅读 · 2020年10月30日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
春天来了,量子位想开了
量子位
0+阅读 · 2022年3月10日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
【经典书】图论,322页pdf
专知会员服务
122+阅读 · 2021年10月14日
专知会员服务
30+阅读 · 2021年10月12日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
94+阅读 · 2020年10月30日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
151+阅读 · 2017年8月1日
微信扫码咨询专知VIP会员