项目名称: 基于毛细管液滴多重不对称MSP/阵列DNA纳米探针的微流控电化学肿瘤多基因甲基化传感新方法
项目编号: No.21475102
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 赵永席
作者单位: 西安交通大学
项目金额: 85万元
中文摘要: 多基因甲基化是与肿瘤发生、发展、转移密切相关的早期事件。本项目围绕DNA纳米探针的界面组装及微尺度下的溶液操控、液滴多重不对称MSP(MA-MSP)、分子识别等问题进行研究,以肺癌为研究对象,拟构建新型智能化阵列微流控电化学多基因甲基化传感平台。利用溶液传递系统,在聚四氟乙烯毛细进样管内,简单形成油包扩增反应液液滴及空气间隔的溶液区带。通过循环加热在管内实现目标基因的同时、快速、高效MA-MSP,产生大量单链DNA。扩增反应与随后检测的空间分离可有效避免相互影响及芯片设计的复杂性。操纵溶液进行可控、低损移动,扩增产物溶液与油相分离后同杂交缓冲液融合,并与后续溶液依次流入阵列DNA纳米探针的微流控芯片,实现单链产物和信号探针高效捕获、酶催化放大的高灵敏电化学检测,以期减少扩增循环数,降低假阳性,最终实现微量提取样本中多基因甲基化的同时、快速、高灵敏及准确检测,为肿瘤早期诊断提供新方法。
中文关键词: 生物分析化学;电化学生物传感器;微流控芯片;肿瘤标志物;信号放大
英文摘要: As an early event, multigene promoter hypermethylation is closely associated with tumor occurrence, progression, metastasis and recurrence. In this project, we make a deteiled research about interfacial assembly of DNA nanostructure probe and solution manipulation, droplet multiple asymmetric MSP (MA-MSP) and molecular recognition in microfluidic channel. And an intelligent electrochemical microfluidic array platform is proposed for the biosensing of multigene methylation. By employing the solution delivery system, the water-in-oil amplification reaction mixture and several air-segmented buffer are simply formed in the teflon capillary tube, respectively. Lots of different single-strand (ss) DNA could be generated at the same time by the fast and highly efficient amplification of target genes in the heating zone of the tube. The separation in space between the amplification process and subsequent detection process effectively prevents their mutual interference as well as the complicated design of chip. The MA-MSP mixture containing ssDNA products will be easily separated from the oil and mix with the hybridization buffer during the controllable and low-loss solution delivery. Subsequently, the mixed buffer and latter signal molecule (poly-HRP) is successively delivered into the DNA nanoprobe-functionalized chip, resulting in the efficient capture of ssDNA followed by poly-HRP. After that, a high HRP-catalyzed amplified electrochemical signals is obtained, which will contribute to the decrease of PCR cycle and false positive. Eventually, the simultaneous, fast, accurate and highly sensitive detection of multigene methylation in trace samples could be achieved with the accomplishment of the project, which would provide a new ideas and technology platform for the early diagnosis of cancer.
英文关键词: Bioanalytical Chemistry;Electrochemical biosensers;Microfluidic chip;tumor markers;signal amplification