项目名称: pBp型II类超晶格长波红外探测材料的界面结构调控及器件制备研究

项目编号: No.11474248

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 郝瑞亭

作者单位: 云南师范大学

项目金额: 98万元

中文摘要: InAs/GaSb II型超晶格红外探测器多采用pin型台面结构,其耗尽区内缺陷辅助隧穿电流以及台面周边的漏电流是探测器暗电流的主要成分,限制了探测器特别是长波红外探测器的性能。pBp结构少子光导型红外探测具有微耗尽区的能带结构和埋入式的器件结构,这样从机制上消除了缺陷辅助隧穿电流和表面漏电流。本项目采用p型InAs/GaSb超晶格作为红外光吸收层(p层)和InAs/AlSb超晶格作为势垒层(B层)制备pBp型少子(电子)长波红外探测器。通过建立理论模型,研究超晶格周期、子层厚度、应变等参数对B/p带阶的影响,得到零带阶的结构参数;研究多层异质探测材料的界面特性、界面行为及载流子输运特性,揭示B/p界面结构对载流子输运和暗电流的影响机理;开展失配体系多层异质探测材料的低缺陷生长机理研究,探索新型pBp少子光导探测器埋入式结构的器件工艺。

中文关键词: InAs/GaSb超晶格;长波红外探测器;pBp结构;少子

英文摘要: Type II InAs/GaSb superlattices detectors are photovoltaic device based on pin structure, so the trap assisted tunneling current in the depletion region and the leakage current at the mesa lateral surface are high which degrade the overall device performance. The pBp structure of photoconductive infrared detection has subband structure with less micro depletion region and embedded device structure type, which eliminates the defect assisted tunneling current and surface leakage current from the mechanism. This project uses the P type InAs/GaSb superlattice as a light absorption layer (p layer) and InAs/AlSb superlattice as the barrier layer (B layer) for preparing pBp type minor (electrons) infrared detector. By establishing the theoretical model, the effects of superlattice period, layer thickness, strain and other parameters on B/p band gap, get zero band structure parameters. Interface characteristic, behavior and carrier transport property of detector materials are studied. The influence mechanism of B/p interface structure on carrier transport and dark current are revealed; Low defects growing mechanism of materials and embedded structure of the detector are researched.

英文关键词: InAs/GaSb superlattices;long wavelength IR detectors;pBp structure;minor carrier

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
32+阅读 · 2021年5月7日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
60+阅读 · 2021年5月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员