项目名称: 低工作电压高性能有机铁电场效应晶体管的制备及性能研究

项目编号: No.61504098

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 李俊

作者单位: 同济大学

项目金额: 21万元

中文摘要: 当前大部分有机铁电场效应晶体管(FeFET)都存在着工作电压过高的缺点。针对该难题,本项目以FeFET为主要研究对象,通过采用新的薄膜制备工艺,即分子层镀膜的LB方法制备厚度均匀且可控的超薄有机高k铁电绝缘栅层P(VDF-TrFE),为寻求低电压驱动的FeFET找到突破口;通过进一步对绝缘栅层进行适当的表面处理并选取具有高迁移率的有机半导体材料作主动层,达到制备在低电压驱动下获得高性能FeFET的研究目标。同时本项目还将针对上述研究过程中面临的一些关键科学问题:LB技术制备得到的超薄的该有机薄膜的铁电性与绝缘性能、有机铁电极化反转与有机半导体内载流子的相互影响及调控方法,进行系统、深入性的研究,并通过建立合适的物理模型认识并理解这些现象的内在原因,为实现低工作电压高性能的FeFET存储器件奠定实验和理论基础。

中文关键词: 有机场效应晶体管;有机铁电薄膜;低工作电压;LB膜技术;铁电极化反转

英文摘要: Currently, most reported organic ferroelectric field-effect transistors (FeFETs) are operated at high voltage refraining them from potential plant-scale application. In this project, to solve the problem, we employ a new thin-film fabrication process, the Langmuir-Blodgett (LB) technique first time to fabricate an ultra thin organic ferroelectric film of poly(vinylidene fluoride – trifluoro ethylene) (P(VDF-TrFE)) as the high k gate insulator with controllable thickness in molecular level. Furthermore, by proper treating the surface of gate insulator and choosing high-mobility organic semiconductors, it is possible to achieve the target of low-voltage high-performance FeFETs. Meanwhile, to understand and master the way to the final target, we systematically and intensively study the following two key scientific issues: 1. the ferroelectric and insulating properties of the LB fabricated P(VDF-TrFE) ultra thin films, 2. the interaction between the strong polarons in the ferroelectric layer and the carriers in the semiconductor layer, and the way to control them by understanding these phenomena in terms of appropriate physical models. In a word, the basic scientific research on experimental and theoretical study will shed light on the realization of the low-voltage high-performance FeFET memory devices and have great impact on the field of organic electronics.

英文关键词: organic field-effect transistor;organic ferroelectric thin film;low-voltage operation;Langmuir-Blodgett technique;ferroelectric polarization reversal

成为VIP会员查看完整内容
0

相关内容

2021图灵奖Jack Dongarra经典书《高性能并行计算》,852页pdf
专知会员服务
109+阅读 · 2022年3月31日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
104+阅读 · 2021年8月23日
《Golang修养之路》干货书
专知会员服务
33+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
20+阅读 · 2021年9月21日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
26+阅读 · 2018年2月27日
小贴士
相关VIP内容
2021图灵奖Jack Dongarra经典书《高性能并行计算》,852页pdf
专知会员服务
109+阅读 · 2022年3月31日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
104+阅读 · 2021年8月23日
《Golang修养之路》干货书
专知会员服务
33+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员