项目名称: 基于表面等离子体亚波长结构的相衬成像方法研究

项目编号: No.61307012

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 姚纳

作者单位: 中国科学院光电技术研究所

项目金额: 24万元

中文摘要: 针对传统相衬显微镜的分辨力衍射受限问题,提出基于表面等离子亚波长结构的超衍射相衬成像方法研究。国际上现有报道的表面等离子体(SP)透镜集中关注振幅型纳米物体的超衍射成像,然而,对于透明的位相型纳米物体相衬成像效果不理想。课题组前期开展位相型纳米物体的相衬成像方法和SP结构设计研究,获得半周期32nm的空间分辨力和折射率差0.05的折射率分辨力的理论相衬成像结果。本项目通过进一步开展纳米物体的相衬成像的机理和规律研究;成像对比度和空间分辨力的影响因素和优化设计方法等关键问题研究,建立位相型纳米物体相衬成像的数理模型和数值计算程序;厘清相衬成像的机理和SP结构的优化设计,搭建实验平台验证SP结构的相衬成像效果,实现结合扫描、放大等方式的远场超衍射相衬成像。为生物学、材料学等学科领域提供一种位相型纳米物体相衬成像的新途径。

中文关键词: 超分辨;相衬成像;表面等离子体;;

英文摘要: Aiming to the diffraction limited resolution of conventional phase-contrast microscope,this project is proposed to achieve sub-diffraction phase-contrast imaging of transparent nano-objects. However, the reported plasmonic lens (Superlens or Hyperlens) are mainly focused on nano amplitude objects, which are pre-inscribed onto an opaque chrome film. To the best of our knowledge, there is no report on sub-diffraction imaging of nano phase objects by utilizing the plasmonic lens structures. According to structure optimization of plasmonics lens, it is numerically demonstrated that the spatial resolution down to 64 nm and minimum distinguishable refraction index difference down to 0.05. In this project, the principle and mechanism of sub-diffraction phase-contrast imaging are need to be further investigated.The impacts of geometry parameters and structures of plasmonic lengs on the spatial resolution and image contrast are analyzed and demonstrasted.New plasmonic lens structure with better phase-contrast performance would be optimized and fabricated. The plasmonic lens structure combined with Hyperlens or glass microsphere would achieve far-field sub-diffraction phase-contrast imaging.This would provied a new rout to achieve far-field nanoscope for application in the biology and materials.

英文关键词: Super resolution;Phase-contrast imaging;Surface plasmons;;

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
35+阅读 · 2021年4月23日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
CT影像肺结节分割研究进展
专知
4+阅读 · 2021年4月23日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
35+阅读 · 2021年4月23日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员