项目名称: 低温熔盐介质中贵金属纳米材料生长机制及形貌调控研究

项目编号: No.51271135

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 杨生春

作者单位: 西安交通大学

项目金额: 80万元

中文摘要: 本项目提出在低温熔盐介质中合成贵金属纳米材料的新思路,通过调控低温熔盐中无机离子同纳米晶粒表面的相互作用以及粒子生长过程的动力学和热力学,实现对贵金属纳米粒子的结构形貌调控,避免传统"水"或"油"相合成体系中有机溶剂不可循环、有机蒸汽对环境和健康的危害以及有机保护剂对催化剂的表面污染等问题。本项目将揭示贵金属纳米材料在低温熔盐这一新体系中形核、生长的基本规律,阐明"离子壳层"同晶粒表面的相互作用及异质离子对纳米粒子生长的影响机制,实现在该体系中对贵金属纳米粒子的多种结构和多元组分的可控合成,建立一种低成本、环境友好的高性能贵金属纳米催化材料的可控合成新体系。研究结果将进一步丰富人们对金属纳米材料形核与生长的认识,具有重要的学术价值。同时,低温熔盐的可循环性、无毒、绿色环保和低成本等优势为开发具有自主知识产权的高活性贵金属基纳米催化材料奠定基础,具有重要的应用前景。

中文关键词: 低温熔盐;贵金属;纳米;可控合成;燃料电池

英文摘要: In current project, a novel strategy in synthesis of noble metal nanomaterials in low-temperature molten salts is proposed. Herein, the stabilization and morphology control of noble metal nanoparticles (NPs) are suggested to be realized through modulating the interactions between "ionic shell" around nanoparticles and particle surfaces. Therefore, several critical shortcomings brought from the application of organic solvents and capping agents in traditional "water" or "oil" phase based synthesis approaches can be well avoided, such as the hazardous to health and surroundings from the organic vapors and their non-recyclable nature and the contamination of particle surface from the surfactants and capping agents. At the same time, the nucleation and growth mechanism of nanocrystals in this novel synthetic system will be revealed. And the effect of inorganic additives and the interaction between "ionic shell" and NPs surface on the growth process of NPs will be illustrated. Furthermore, we will try to establish a new, low-cost and environment-friendly synthetic system in synthesis of noble metal catalytic nanomaterials with high properties. The findings will further promote the understanding of nucleation and growth mechanism of metal nanomaterials in ionic solvent, which have important academic value. The advanta

英文关键词: low-temp molten salts;noble metal;nano;controlled systhesis;fuel cell

成为VIP会员查看完整内容
0

相关内容

智能无人集群系统发展白皮书
专知会员服务
300+阅读 · 2021年12月20日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关主题
相关VIP内容
智能无人集群系统发展白皮书
专知会员服务
300+阅读 · 2021年12月20日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员