项目名称: 基于自蔓延放热反应的低温圆片键合技术研究

项目编号: No.50875102

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 机械、仪表工业

项目作者: 陈明祥

作者单位: 华中科技大学

项目金额: 36万元

中文摘要: 随着半导体技术的发展,封装集成度不断提高,迫切需要发展一种低温圆片键合技术,满足热膨胀系数差较大的同质或异质材料间的集成需求。本项目借鉴材料制备中自蔓延高温合成(SHS)技术原理,发展和改造成为用于电子封装的低温圆片键合技术。通过纳米材料组成的反应活性层的放热反应所产生的局部高温来加热和熔化焊料,实现整体上的低温甚至室温键合。研究自蔓延放热反应键合机理并建立物理模型;优化反应活性层结构设计与制备方法;开展圆片级反应键合点火方法以及应用技术研究。反应键合过程中,除引燃外无需外部能量持续供给,耗能低、设备简单、适用性广。由于键合片整体温度较低,不仅有效避免了高温对温度敏感电路和微结构的不利影响,而且可满足热膨胀系数差较大的异质材料集成需求。本项目的实施对解决硅与非硅基MEMS器件、IC器件、光电器件的混合集成具有重要理论意义和广阔的商业前景。

中文关键词: 封装;圆片键合;微机电系统(MEMS);自蔓延高温合成(SHS)

英文摘要: With the rapid development of semiconductor technology and increasing packaging integration, it is necessary to develope a low-temperature wafer bonding technique to satisfy the integration of homogenous and heterogeneous materials with big difference in coefficient of thermal expand(CTE). In this project, Self-propagating High-temperature Synthesis(SHS) used in materials preparation is developed to a low-temperature wafer bonding technique for electronical packaging. By the exothermic reaction of reactive layers, local high temperature will heat and melt the solder, low temperature and room temperature bonding is promised. Research contents include: 1)The principle and physical model of SHS reaction bonding; 2)Optimization of struction design and preparation of reactive layer; 3)Study on the ignition technologies for wafer level reaction bonding and its applications. Reaction bonding based on SHS has many advantages, such as energy saving, simple process equipment and high flexibility. As a low temperature process in general, reaction bonding not only avoid the bad effect of high temperature on the thermal-sensitive circuit and micro-structures, but also satisfy the integration of homogenous and heterogeneous materials with high difference in CTE. Research on reaction bonding can solve the integration problems between silicon and non-silicon based MEMS devices, IC devices and Opto-Electronic devices.

英文关键词: Packaging; Wafer bonding; Micro-Electronic-Mechanic-System(MEMS); Self-propagating High-temperature Synthesis(SHS)

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
116+阅读 · 2022年4月8日
【NeurIPS2021】由相似性迁移的弱样本细粒度分类
专知会员服务
20+阅读 · 2021年11月11日
专知会员服务
15+阅读 · 2021年5月13日
专知会员服务
39+阅读 · 2021年5月12日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
67+阅读 · 2020年12月12日
专知会员服务
31+阅读 · 2020年4月24日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transparent Shape from Single Polarization Images
Arxiv
0+阅读 · 2022年4月19日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
16+阅读 · 2020年5月20日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
116+阅读 · 2022年4月8日
【NeurIPS2021】由相似性迁移的弱样本细粒度分类
专知会员服务
20+阅读 · 2021年11月11日
专知会员服务
15+阅读 · 2021年5月13日
专知会员服务
39+阅读 · 2021年5月12日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
67+阅读 · 2020年12月12日
专知会员服务
31+阅读 · 2020年4月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员