项目名称: 稀土离子在卷曲微谐振腔中的光学性质和调制研究

项目编号: No.51302039

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 王娇

作者单位: 复旦大学

项目金额: 25万元

中文摘要: 基于有机聚合物牺牲层的卷曲技术已成为制备管状光学谐振腔的重要手段之一。本项目拟利用卷曲纳米技术,将具有特殊发光性质的稀土掺杂氧化物材料制备成管状光学谐振腔。该类自卷曲管状微腔兼具稀土离子可见光发射特性及光学谐振腔功能,在实现发射特定波长范围可见光的同时,通过控制谐振腔几何参数调制发射光波,使其在实际应用中更具优势。我们将综合利用Mie散射理论及时域有限元分析方法从理论角度进一步分析该类光学谐振腔的光学特性。本项目拟综合实验及理论研究结果,阐释调制该类光学谐振腔特性的一般规律,并进一步探索利用光学谐振腔的谐振及波导效应,构建微纳探测器和激光器的可能性。此项目的研究成果为实现低成本、低阈值、多色可见光发射微激光器及智能探测微器件研究提出新的研究思路。

中文关键词: 自卷曲光学谐振腔;微晶多面体;稀土离子;发光特性;光学谐振

英文摘要: Self-rolled nanotechnology is one important method for fabrication of optical micro-cavities from in-organic functional nano-membrane on polymer layer. In present project, rare earth ions with luminescent properties will be intentionally introduced into the walls of self-rolled oxide tubular optical micro-cavities with sub-wavelength wall thickness. These tubular optical micro-cavities thus possess both the luminescent properties of rare earth ions and the optical resonance from tubular geometries, making them capable of emitting visible light in desired region with modulation for practical applications. Both scattering theory and finite-difference time-domain approaches will be used in the theoretical study to get deep insight of the optical properties of the micro-cavities. The principles of optical modulation in these self-rolled up micro-cavities will be obtained on the basis of the combination of both experimental and theoretical investigations, and the possibility of constructing new optical components like detector and micro-laser will be explored. The output of this project may pave the way for the future realization of low cost, low threshold, and multi-color laser micro-devices working in visible range.

英文关键词: self-rolled tubular micro-cavities;micro-crystal polyhedron;rare-earth ions;luminescent properties;optical resonance

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
25+阅读 · 2021年4月2日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
专知会员服务
40+阅读 · 2020年12月8日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
15+阅读 · 2018年6月23日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员