项目名称: 生物负载石墨烯修饰电极制备及其在有机氯化物电生物脱氯中的催化机理

项目编号: No.21207028

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 环境化学

项目作者: 刘奇

作者单位: 杭州师范大学

项目金额: 24万元

中文摘要: 有机氯化物脱氯对污染物有效控制和废物资源化具有重要的科学意义和应用价值,然而采用包埋血红蛋白负载石墨烯材料作为电极进行有机氯化物电生物脱氯国内外尚属空白。本项目旨在合成包埋血红蛋白负载石墨烯电极,揭示其进行有机氯化物脱氯中的催化机理。通过表面处理、吸附和包埋相结合的方法,制备血红蛋白修饰石墨烯电极并采用各种表征手段,考察电极表面形貌、组成、微结构与脱氯效率之间的关系,克服传统吸附法制备生物电极结合力弱的缺点,并有效降低血红蛋白使用量。根据不同条件下有机氯化物电生物脱氯的规律,结合电化学表征和原位红外光谱,深入研究代表性有机氯化物脱氯的反应机理。本项目不仅为制备新型生物电极提供一条崭新的途径,也可促进化学、材料、生物和环境等学科的交叉融合,有重要的学术意义。

中文关键词: 血红蛋白;氯代有机物;电催化;电极稳定性;电生物脱氯

英文摘要: The dechlorination of chlorinated organic compounds (COCs) has scientific significance and application value for pollutant control and reclamation of wastes, however, at present there are no systemic researches on bioelectrochemical dechlorination of COCs using gel immobilized hemoglobin on graphene modified electrode (Hb-GE). The objective of the project was to prepare Hb-GE and to elucidate its catalytic role in the dechlorination process. More specifically, the Hb-GE based on two complexes of immobilize techniques with absorption and encapsulation. The effects of the dechlorination efficiency, and several electrode surface condition including surface morphology and composition and micro-structure on the response characteristics were investigated. By these works, we expect to overcome the drawback of the absorption technique, including hemoglobin loss during dechlorination of COCs, and reduce hemoglobin dosage of the prepared modified electrode. In addition, we also plan to study the bioelectrocatalytic dechlorination mechanism of Hb-GE by summarizing the law of electrochemical information and in situ fourier transform infrared spectra. In conclusion, the project has important scientific significance, not only on providing new approaches for preparation of novel biocatalytic electrode but also on promoting dis

英文关键词: hemoglobin;chlorinated organic compounds;electrocatalysis;electrode stability;bioelectrochemical dechlorination

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【NeurIPS2021】基于贝叶斯优化的图分类对抗攻击
专知会员服务
18+阅读 · 2021年11月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年3月18日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2020年10月19日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【NeurIPS2021】基于贝叶斯优化的图分类对抗攻击
专知会员服务
18+阅读 · 2021年11月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年3月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员