项目名称: 基于光力学系统的量子网络研究

项目编号: No.61308012

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 杨榕灿

作者单位: 福建师范大学

项目金额: 25万元

中文摘要: 量子纠缠是量子力学的一个重要特征,也是构建量子网络的核心量子资源。由于宽尺寸覆盖和高品质因子的特点,力学设备在宏观量子特性研究、量子传感器和变换器等方面有着重要的作用。光和力学设备通过光辐射压力相互耦合,使得力学模的量子态操控可以借助成熟的量子光学工具来完成。随着高品质光学微腔的使用,光和力学模的相互作用强度进入强耦合区域,使得力学设备的优点可以得到充分的发挥。自旋比特等是理想的量子信息存储器之一,借助可移动镜子的F-P腔等腔光力学模型,可以实现自旋比特等局域处理节点的远距离量子纠缠。本项目拟以腔光力学系统和自旋比特的耦合为研究对象,构建合适的相互作用模型,提出操作简便,抗环境噪声能力较强的量子网络构建方案,并结合当前的实验技术参数进行计算机模拟,为付诸实验提供指导和参考。

中文关键词: 光力学;光波微波光子关联;量子单态;腔QED;

英文摘要: Quantum entanglement is a distinct feature for quantum physics different from classical and is the central resource for quantum network. Due to its wide range from microscopic size to macroscopic one (for example nanometers to centimeters) and high-quality factors, mechanical device is now at the verge of becoming a new entry to prepare quasi-macroscopic quantum states and carry out quantum tensors and quantum transducers. The coupling between quantum light and mechanical resonators via radiation pressure makes the generation, control and manipulation of mechanical states possible via the toolbox of quantum optics. With the use of high-quality optical microcavities, the strong coupling between light field and mechanical modes may be obtained, making the advantages of mechanical devices fully utilized. Spin qubits and other static ones are ideal candidates for quantum information storage. The project will use cavity-optomechanical system and static qubits, and then design appropriate interaction models to entangle remote quantum processing nodes more conveniently and robust against the dissipation from external environments in order for quantum networks. Finally, numerical simulation results are gained by the combination of the laboratory technical parameters, which provide theoretical guidance and reliable refe

英文关键词: Opto-mechanics;optical-microwave photon correlation;singlet state;cavity QED;

成为VIP会员查看完整内容
0

相关内容

协同过滤推荐系统综述
专知会员服务
44+阅读 · 2021年11月4日
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
68+阅读 · 2021年10月10日
专知会员服务
62+阅读 · 2021年5月3日
【经典书】精通Linux,394页pdf
专知会员服务
89+阅读 · 2021年2月19日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
Argus:基于区块链技术的去中心化奖励系统
微软研究院AI头条
0+阅读 · 2021年8月25日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
YouTube深度学习推荐系统的十大工程问题
AI前线
10+阅读 · 2019年1月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年5月25日
小贴士
相关VIP内容
协同过滤推荐系统综述
专知会员服务
44+阅读 · 2021年11月4日
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
68+阅读 · 2021年10月10日
专知会员服务
62+阅读 · 2021年5月3日
【经典书】精通Linux,394页pdf
专知会员服务
89+阅读 · 2021年2月19日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员