项目名称: 温室CO2循环动力学与草莓糖代谢互作机制研究

项目编号: No.31201579

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 植物保护学、园艺学与植物营养学

项目作者: 钟传飞

作者单位: 北京市农林科学院

项目金额: 25万元

中文摘要: 我国草莓种植规模居世界首位,80%为设施栽培,但植物光合与呼吸、土壤呼吸与气流交换等因子对温室CO2循环动力学的贡献度尚不清楚,草莓风味形成过程的叶片光合动力学与果实糖代谢的互作机制研究较少。本研究利用不同尺度CO2红外分析技术及荧光动力学手段,从温室、植株到叶片3个尺度,多点连续监测草莓坐果期、绿果期、白果期、粉红期、成熟期等5个关键期的CO2循环动力学规律与草莓光合动力学规律。同时,结合13C示踪技术与液质联用技术,研究具有非呼吸越变型果实的草莓在源库可溶性糖逆浓度梯度运输情况下的光合作用转变机制;揭示在温室CO2循环变化条件下,各关键时期草莓叶片光合动力学与果实糖代谢的互作机制。再通过研究不同时期CO2施肥对果实糖代谢的影响,探索高效的优质栽培技术。本研究将在解析温室CO2循环动力学的基础上,推进作物光合作用源库关系研究由产量向风味品质深入。

中文关键词: 草莓;光合作用;源库;13C;糖代谢

英文摘要: China is the largest strawberry production country in the world, with 80% of facility cultivation. However, the contributions of factors like plant photosynthesis, plant respiration, soil respiration and airflow exchange to CO2 circulation dynamic are still not very clear. There are even less researches on the interplay mechanism between leaf photosynthetic kinetics and carbohydrate metabolism in greenhouse condition during the key periods of fruit flavor formation. In this research, through CO2 infrared analysis technologies of different scales and chlorophyll fluorescence kinetics, multi-point continuous monitoring of CO2 circulation dynamics as well as strawberry photosynthetic kinetics were carried out from three scales of greenhouses, plants and leaves, at 5 key periods of fruit development, including fruit setting, green fruit, white fruit, pink fruit and maturity. Meanwhile, combining with the 13C-labelling technique and HPLC-MS techniques, the law of photosynthetic product synthesis and transportation of strawberry leaves, and carbohydrate accumulation and transformation of fruit were revealed during the key periods under conditions of dynamic changes of greenhouse CO2, furthermore, the interaction mechanism of greenhouse CO2 cycle dynamics and strawberry carbohydrate metabolism were explored. Then effic

英文关键词: strawberry;photosynthesis;sink and source;13C;sugar metabolism

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《利用人工智能加速能源转型》报告
专知会员服务
80+阅读 · 2022年2月23日
专知会员服务
86+阅读 · 2021年8月8日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
专知会员服务
43+阅读 · 2020年12月8日
专知会员服务
86+阅读 · 2019年12月13日
微软办公环境大揭秘!
微软招聘
0+阅读 · 2021年12月24日
走,到农村去!
人人都是产品经理
0+阅读 · 2021年12月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《利用人工智能加速能源转型》报告
专知会员服务
80+阅读 · 2022年2月23日
专知会员服务
86+阅读 · 2021年8月8日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
专知会员服务
43+阅读 · 2020年12月8日
专知会员服务
86+阅读 · 2019年12月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员