项目名称: 短肽衍生物自组装水凝胶的结构控制、刺激响应机理与药物缓控释研究

项目编号: No.21202076

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机化学

项目作者: 熊芸

作者单位: 兰州大学

项目金额: 25万元

中文摘要: 短肽自组装水凝胶因其良好的生物相容性、生物降解性和刺激响应性而被认为是一类很有应用前景的生物功能材料。本项目采用液相法合成一系列带有敏感官能团的短肽衍生物作为凝胶剂,利用其在水中自组装制备超分子水凝胶并测试凝胶的基本性质。系统地研究凝胶剂的化学结构和自组装环境对凝胶聚集体微结构的影响,实现聚集体结构的可控。探讨短肽自组装水凝胶对外界环境(如温度、pH 值、离子强度等)的刺激响应机理,以及水凝胶的生物相容性,为其作为药物载体奠定基础。负载抗肿瘤药物分子于水凝胶体系中,系统地研究药物分子在凝胶体系内的扩散释放行为,探讨凝胶微结构对载药性质和体外释药性能的影响,明确短肽自组装水凝胶作为药物载体的构效关系。本项目在合成新型刺激响应性短肽衍生物的基础上,通过化学方法调控凝胶聚集体的微结构,进而控制药物分子的扩散释放,这些研究对新型抗肿瘤药物缓控释材料的设计和制备及其在生命科学领域的应用具有重要意义。

中文关键词: 自组装;超分子凝胶;水凝胶;刺激响应;控制释放

英文摘要: Supramolecular hydrogel based on the self-assembly of peptide is considered to be a very promising class of biofunctional materials because of its good biocompatibility, biodegradability and stimulate responsiveness.In this project, a series of peptide derivatives will be synthesized as gelators to produce supramolecular hydrogels through the molecular interaction. Anticancer drugs will be loaded in the self-assembling hydrogels. Firstly, peptide derivatives with sensitive functional groups will be synthesized through liquid phase method using amino acids condensation, and then self-assemble to form supramolecular hydrogel. The properties and biocompatility of hydrogel will be test. Change the gel self-assembly environment, such as temperature, pH, ionic strength, etc., to explore the micro-structure of gelator aggregates affected by the external environment and obtain the aggregates with structural controllability. Stimuli-responsive mechanism of the supramolecular hydrogel to the external environment will be studied in depth. The diffusion and release of anticancer drugs loaded in the hydrogel is closely related to the micro-structure, and this project will systematically research the controlled release mechanism of drugs in the different micro-structure hydrogels. This research will be significant to the desi

英文关键词: self-assembly;supramolecular gel;hydrogel;stimuli-responsive;controlled release

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
56+阅读 · 2021年6月30日
专知会员服务
32+阅读 · 2021年5月7日
专知会员服务
23+阅读 · 2021年3月23日
专知会员服务
136+阅读 · 2021年2月17日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
54+阅读 · 2021年1月29日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
11+阅读 · 2021年3月25日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
56+阅读 · 2021年6月30日
专知会员服务
32+阅读 · 2021年5月7日
专知会员服务
23+阅读 · 2021年3月23日
专知会员服务
136+阅读 · 2021年2月17日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
54+阅读 · 2021年1月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员