项目名称: 基于复合微腔的高效内腔差频太赫兹辐射源

项目编号: No.61505089

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 刘鹏翔

作者单位: 中国科学院沈阳自动化研究所

项目金额: 20万元

中文摘要: 太赫兹技术在生物医学、环境监测和安全检查等高分辨波谱分析及成像领域具有广阔的应用前景。现有的几种单频太赫兹辐射源,在输出性能、成本和实用性等方面,还难以满足上述应用领域的需求。基于非线性光学差频方法的太赫兹辐射源具有低成本,宽调谐、窄线宽、相干性好,以及室温运转等优点,但也存在着转换效率和输出功率低的不足。针对当前高分辨波谱分析和成像等领域对低成本高性能单频太赫兹辐射源的需求,本项目提出了在亚相干长度复合微腔中通过准三谐振内腔差频实现高效率窄线宽太赫兹输出的技术研究方案。通过对内腔本征模谐振增强的机理研究,总结出提升差频太赫兹辐射源转换效率的新途径。同时,本方案的设计结构简单,集成度高,实用性好,将对促进高分辨太赫兹波谱分析和成像等应用领域的发展具有重要的意义。

中文关键词: 太赫兹波源;可调谐太赫兹波;非线性差频

英文摘要: Terahertz (THz) technology has potential for the applications in the field of spectrum analysis and imaging with high resolution, such as bio-medical testing and pollution detection. However, the existing monochromatic THz sources cannot satisfy the demand of such applications in some aspects. Photonic THz sources based on nonlinear optics can provide several advantages: low cost, monochromatic with narrow linewidth, widely tunable, coherent, and operating at room temperature, which is an ideal source in THz spectrum analysis system. The main drawback is the low conversion efficiency and output power. In this project, we propose a novel scheme to achieve efficient THz source with narrow linewidth, based on quasi-triply resonant intra-cavity difference frequency generation in a micro-cavity with sub-coherent-length. An approach for the improvement of optical-to-THz conversion efficiency will be given, by investigating the mechanism of intra-cavity resonant enhancement. This proposed new THz source is most promising to the applications of THz technology in fields of bio-medical spectroscopy and imaging.

英文关键词: terahertz source;tunable terahertz wave;difference frequency generation

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
15+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
智能无人集群系统发展白皮书
专知会员服务
275+阅读 · 2021年12月20日
专知会员服务
36+阅读 · 2021年10月16日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2021年2月8日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
126+阅读 · 2020年9月6日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
15+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
智能无人集群系统发展白皮书
专知会员服务
275+阅读 · 2021年12月20日
专知会员服务
36+阅读 · 2021年10月16日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2021年2月8日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员