项目名称: 基于电磁诱导透明效应的等离子体亚波长结构器件

项目编号: No.11504139

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 王继成

作者单位: 江南大学

项目金额: 20万元

中文摘要: 表面等离子体由于能突破衍射极限,其表面局域及近场增强的特性,为制造光子集成器件及微纳光学器件提供有效途径,成为目前光电研究领域的热门研究课题。本项目利用有限元法及时域有限差分法,研究等离子体激元在MIM及石墨烯等离子体结构中的传播,构造基于石墨烯多模谐振腔结构、硅基石墨烯平层结构、凹槽混合波导结构及MIM波导结构等多种新颖二维及三维等离子体亚波长器件。通过调节结构及外加电压参数,控制其中电磁诱导透明效应的产生。利用耦合模式、传输矩阵等理论分析电磁诱导透明及慢光效应的工作机制。利用电子束刻蚀、SiC外延及化学气相沉积等实验制备方法,对理论提出的等离子体亚波长器件进行实验制备,为设计具有市场应用前景的微纳集成器件提供依据。

中文关键词: 等离子体;电磁诱导透明;石墨烯;金属-介质-金属;有限元法

英文摘要: Surface Plasmon Polaritons (SPPs) break the diffraction limit, possess surface area and near field enhanced two unique properties, and pave a way for the large-scale integrated-photonical and micro optical devices. Therefore, SPPs is becoming a research hotspot of modern photoelectric field. This project main researches the propagating of SPPs in the MIM and graphene shaped plasmonic structures of by finite-difference time-domain (FDTD) method and finite element method (FEM). The several novel two-dimensional and three-dimensional plasmonic devices of the multimode resonators structures based on the graphene, the graphene sheet structures based on the Si substrates, the hybird waveguide based on the groove structures and the MIM waveguide structures are fabricated. The electromagnetically induced transparency (EIT) effects and slow light effects are found in the parts of above devices. The EIT and slow light effects could be controled by tuned the structures and bias voltages Parameters. The operational principles of those effects are considered by theoretical methods such as coupled model theory (CMT), the transfer matrix theory. The experimental preparation methods including the electronic beam lithography, SiC epitaxial method and Chemical vapor deposition are adopted to manufacture those plasmonic subwavelegth devices. It will provide the basis for the designment of optoelectronic devices with market application prospects.

英文关键词: plasmonics;electromagnetically induced transparency ;graphene;metal-insulator-metal;finite element method

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
64+阅读 · 2021年12月29日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
2021中国工业视觉行业研究报告
专知会员服务
54+阅读 · 2021年9月22日
专知会员服务
48+阅读 · 2021年6月2日
专知会员服务
28+阅读 · 2020年8月8日
【CVPR2020】时序分组注意力视频超分
专知会员服务
30+阅读 · 2020年7月1日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年5月25日
小贴士
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
64+阅读 · 2021年12月29日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
2021中国工业视觉行业研究报告
专知会员服务
54+阅读 · 2021年9月22日
专知会员服务
48+阅读 · 2021年6月2日
专知会员服务
28+阅读 · 2020年8月8日
【CVPR2020】时序分组注意力视频超分
专知会员服务
30+阅读 · 2020年7月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员