项目名称: 基于氧化物纳米线阵列的异质结紫外探测器的研究

项目编号: No.61274068

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 阮圣平

作者单位: 吉林大学

项目金额: 88万元

中文摘要: 以极性界面水解法生长的ZrxTi1-xO2纳米线阵列为基底材料,使之与SrTixZr1-xO3固溶体纳米薄膜相结合,来研制探测范围可调的日盲、可见盲型异质结宽禁带半导体紫外探测器,以解决目前器件响应恢复时间长、吸收边调节困难、暗电流大的难题。通过对基底材料组分、结构的控制,改变材料的禁带宽度和器件异质结的特性,从而降低暗电流,实现对频率响应范围的调节。利用一维纳米材料的结构特性,为载流子的定向传输提供导向作用,增大构成异质结的ZrxTi1-xO2纳米线阵列与SrTixZr1-xO3相互接触的结面积,同时充分发挥纳米线的限域作用,减少载流子的复合几率,使器件在获得较快响应速度的同时,具有高的响应度,为探索高效的紫外探测器件结构提供新的解决思路。预计器件吸收边在310-380nm可调,5V偏压下暗电流小于1nA,在260nm处响应度600A/W,响应时间小于4ms。

中文关键词: 固溶体;紫外探测器;异质结;;

英文摘要: A low temperature polar interfacial reaction method was adopted to grow well-aligned ZrxTi1-xO2 nano-wire array which was subsequently used together with SrTixZr1-x O3 solid solution nano-film to fabricate visible-blind、solar-blind heterojunction UV detectors. By controlling the contents of each component, both the band gap of base material and the heterojunction characteristics are well adjusted. Thus low dark current and adjustable response range could be obtained. Furthermore, the one-dimensional nanowire structure not only speeds up the transportation of the carriers along the straight conduction pathways, enlarging the contacting interface between ZrxTi1-xO2 nano-wire and SrTixZr1-xO3 film, but also decreases the recombination probability of the photogenerated electron-hole. This technology can not only low down the response time, improve the responsivity of the device greatly, but also provide an effective way in researching the efficient UV detector. It is anticipated that the absorption edge of the device should be adjustable in 310-380 nm, the dark current of the devices will be less than 1nA under 5V bias,the responsibility will be larger than 600A/W under 260 nm UV light, and the respons time will be less than 4ms.

英文关键词: Solid solution;Ultraviolet detector;Heterojunction;;

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
41+阅读 · 2021年2月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
56+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
41+阅读 · 2021年2月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员