项目名称: 面向空中智能交通的大规模飞行航迹处理与分析方法研究
项目编号: No.U1533106
项目类型: 联合基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 赵元棣
作者单位: 中国民航大学
项目金额: 34万元
中文摘要: 飞行航迹的处理与分析作为对航空器的飞行状态进行实时监控、保障飞行安全的基础和关键技术之一,已成为空中智能交通领域的研究前沿和热点。本项目拟以民航空管实际应用为研究背景,将数字几何处理思想引入飞行航迹处理领域,重点研究大规模飞行航迹数据的自适应简化、多尺度聚类和中心航迹提取等问题。具体的,研究在保持特征点和时序一致性的前提下,面向航迹曲线的自适应简化方法及其鲁棒性分析;研究在多尺度条件下,针对不同类型的飞行航迹数据的鲁棒性聚类方法及其特征分析;研究面向航迹簇的中心航迹提取方法及其相似度分析,并应用于异常航迹检测与预警、飞行状态识别与预测、管制员工作负荷评估等实际应用领域。本项目的研究,不仅可以为飞行航迹处理领域开辟新的研究思路,丰富其研究手段,也可以利用民航空管所具有的实际应用背景,深度挖掘并检验数字几何处理方法的实时性、可靠性和鲁棒性,因此,具有重要的理论意义和应用价值。
中文关键词: 空中智能交通;飞行航迹数据;自适应简化;多尺度聚类;骨架提取
英文摘要: Flight trajectory processing and analyzing, which is one of the basic and key techniques for real-time monitoring flight status of aircraft and guaranteeing flight safety, has been the research front and hot topic in the field of air intelligent transportation. This project sets the actual applications of air traffic management in the field of civil aviation as the research background, and introduces the idea of digital geometry processing into the field of flight trajectory processing. We mainly study the adaptive simplification, multi-scale clustering and central trajectory extraction methods for big flight trajectory data. The main contributions include: research on the adaptive simplification method for trajectory curves under the premise of maintaining the features and the consistency of time series and its robustness analysis, research on the multi-scale and robust clustering method for different types of flight trajectory data and its feature analysis, and research on the central trajectory extraction method for trajectory clusters and its similarity analysis. We also try to apply it into abnormal trajectory detection and pre-warning, identification and prediction of flight status, evaluation of controller’s workload and other practical applications. This project not only can open up a new research train of thought and enrich the research techniques for the field of flight trajectory processing, but also can develop and verify the timeliness, reliability and robustness of digital geometry processing methods by using the actual applications of air traffic management in the field of civil aviation. Therefore, this project has important theoretical significance and application value.
英文关键词: air intelligent transportation;flight trajectory data;adaptive simplification;multi-scale clustering;skeleton extraction