重磅 | 经典教材 R. Sutton《增强学习导论》最新版(548PDF)

2018 年 4 月 1 日 新智元

精彩回顾

2018新智元产业跃迁AI技术峰会圆满结束,点击链接回顾大会盛况:


爱奇艺     http://www.iqiyi.com/l_19rr3aqz3z.html 

腾讯新闻 http://v.qq.com/live/p/topic/49737/preview.html 

新浪科技 http://video.sina.com.cn/l/p/1722511.html 

云栖社区 https://yq.aliyun.com/webinar/play/419  

斗鱼直播 https://www.douyu.com/432849 

天池直播间  http://t.cn/RnQPhuY

IT大咖说 http://www.itdks.com/eventlist/detail/1992




  新智元编译  

编译:克雷格


【新智元导读】加拿大阿尔伯塔大学著名增强学习大师 Richard S. Sutton 教授的经典教材《增强学习导论》(Reinforcement Learning: An Introduction)第二版近期更新,现书稿的草稿在其主页提供,新智元编译图书的目录部分,全书(英文版 draft)可在新智元公众号下载。本书系统性地介绍了增强学习,共548页,其中不乏许多新颖的应用案例分析。


《强化学习导论》电子书地址:

https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view


全书目录


第二版引言

第一版引言

符号总结


摘要


1. 增强学习的问题


1.1 增强学习

1.2 案例

1.3 增强学习要素

1.4 限制和范围

1.5 一个延伸案例:Tic-Tac-Toe

1.6 小结

1.7 增强学习的历史


列表法


2. 多臂赌博机(Muti-arm Bandits)问题


2.1 K-臂赌博机问题

2.2 行动值方法

2.3 The 10-armed Testbed

2.4增量实现

2.5 追踪一个非稳态解

2.6 优化初始值

2.7 置信上界行动选择

2.8 梯度赌博机算法

2.9 关联检索

2.10 小结


3. 有限马尔科夫决策过程


3.1 代理(agent)环境交互

3.2 目标和回馈

3.3 返回

3.4 为插入或连续性任务统一符号

3.5 策略和价值函数

3.6 优化策略和价值函数

3.7 优化和近似

3.8 总结


4. 动态编程


4.1 策略估计

4.2 策略改进

4.3 策略迭代

4.4 迭代值

4.5 异步动态编程

4.6 泛化的策略迭代

4.7 动态编程的效果

4.8 总结


5. 蒙特卡洛方法


5.1 蒙特卡洛预测

5.2 蒙特卡洛对行动价值的评估

5.3 蒙特卡洛控制

5.4 不读取(Explore)开始条件下的蒙特卡洛控制

5.5 通过重要抽样进行无策略(off-Policy)预测

5.6 增量实现

5.7 Off-Policy 蒙特卡洛控制

5.8 *Discounting-aware Importance Sampling

5.9 *Per-decision Importance Sampling

5.10 总结


6. 时间差分(TD)学习


6.1 时间差分预测

6.2 时间差分预测方法的优势

6.3 TD(o)的最佳性

6.4 Sarsa:在策略(On-Policy) TD 控制

6.5 Q-Learning:连策略TD 控制

6.6 期待的Sarsa

6.7 偏差最大化和双学习

6.8 游戏、afterstates 和其他具体案例

6.9 总结


7. 多步骤 bootstrapping


7.1 n-step TD 预测

7.2 n-step Sarsa

7.3 通过重要性抽样进行 n-step 离策略学习

7.4 *Per-decision Off-policy Methods with Control Variates

7.5无重要性抽样下的离策略学习:n-step 树反向算法

7.6 一个统一的算法:n-step Q( σ)

7.7 总结


8. 用列表方法进行计划和学习


8.1 模型和计划

8.2 Dyna:融合计划、行动和学习

8.3 模型错了会发生什么

8.4 优先扫除 (prioritized sweeping)

8.5 Expected vs. Sample Updates

8.6 Trajectory Sampling

8.7 Real-time Dynamic Programming

8.8 计划作为行动选择的一部分

8.9 启发式搜索

8.10 Rollout Algorithms

8.11 蒙特卡洛树搜索

8.12 本章总结

8.13 Summary of Part I: Dimensions


近似法解决方案 


9. 使用近似法的在政策预测


9.1 价值函数的近似

9.2 预测目标(MSVE)

9.3 随机梯度和半梯度的方法

9.4 线性方法

9.5 线性方法中的特征构建

   9.5.1 多项式

   9.5.2 傅里叶基础

   9.5.3 Coarse coding

   9.5.4 Tile Coding

   9.5.5 径向基函数

9.6 Selecting Step-Size Parameters Manually

9.7 非线性函数近似:人工神经元网络

9.8 最小平方TD

9.9 Memory-based Function Approximation

9.10 Kernel-based Function Approximation

9.11 Looking Deeper at On-policy Learning: Interest and Emphasis 

9.12 总结

10. 用近似法控制on-policy 在策略


10.1  插入式的半梯度控制

10.2 n-step 半梯度Sarsa

10.3 平均回馈:连续任务中的新问题设定

10.4  “打折”的设置要考虑可用性

10.5 n-step 差分半梯度Sarsa

10.6 总结


11. 使用近似法的离策略方法


11.1 半梯度的方法

11.2 Barid 的反例

11.3 The deadly triad

11.4 Linear Value-function Geometry 

11.5 Gradient Descent in the Bellman Error 

11.6 The Bellman Error is Not Learnable

11.7 Gradient-TD Methods

11.8 Emphatic-TD Methods

11.9 Reducing Variance

11.10 总结


12. 合格性追踪


12.1 λ-返回

12.2 TD(λ)

12.3 n-step Truncated λ-return Methods

12.4 Redoing Updates: The Online λ-return Algorithm

12.5 真实的在线TD(λ)

12.6 蒙特卡洛学习中的Dutch Traces

12.7 Sarsa(λ) 

12.8 Variable λ and γ

12.9 Off-policy Eligibility Traces with Control Variates

12.10 Watkins’s Q(λ) to Tree-Backup(λ)

12.11 Stable Off-policy Methods with Traces

12.12 Implementation Issues

12.13 结论


13. 策略梯度方法


13.1 策略近似及其优势

13.2 策略梯度的原理

13.3 增强:蒙特卡洛策略梯度

13.4 使用基准增强

13.5 评估-决策方法(Actor-Critic)

13.6 连续问题中的策略梯度(平均回馈率)

13.7 连续行动中的策略参数化

13.8 总结


更深层的展望


14.心理学


14.1 预测和控制

14.2 经典的调节

   14.2.1 Blocking and Higher-order Conditioning

 14.2.2 rescorla wagner 方法

   14.2.3  TD模型

   14.2.4 TD 模型模拟

14.3  有用条件

14.4 延迟的增强

14.5 认知图

14.6 习惯和目标导向的行为

14.7 总结


15. 神经科学


15.1 神经科学基础

15.2 回馈信号、价值、预测误差和增强信号

15.3 回馈预测误差假设

15.4 回馈预测误差假设的实验支持

15.6 TD 误差/ 多巴胺对应

15.7 神经评估-决策

15.8 评估-决策的学习规则

15.9 快乐主义的神经元

15.10 集体增强学习

15.11 大脑中基于模型的方法

15.12 上瘾

15.13 总结


16.  应用和案例分析


16.1 TD-Gammon

16.2 Samuel 的西洋棋玩家

16.3  Watson的 Daily-Double

16.4 优化记忆控制

16.5 人类水平的电子游戏

16.6 下围棋

 16.6.1 AlphaGo

 16.6.2 AlphaGo Zero

16.8 个性化网页服务

16.9 热气流滑翔


17.前沿

17.1 General Value Functions and Auxiliary Tasks 

17.2 Temporal Abstraction via Options 

17.3 Observations and State

17.4 Designing Reward Signals 

17.5 Remaining Issues 

17.6 Reinforcement Learning and the Future of Artificial Intelligence


参考文献


说明


书中部分插图



《强化学习导论》电子书地址:

https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view




精彩回顾

2018新智元产业跃迁AI技术峰会圆满结束,点击链接回顾大会盛况:


爱奇艺     http://www.iqiyi.com/l_19rr3aqz3z.html 

腾讯新闻 http://v.qq.com/live/p/topic/49737/preview.html 

新浪科技 http://video.sina.com.cn/l/p/1722511.html 

云栖社区 https://yq.aliyun.com/webinar/play/419  

斗鱼直播 https://www.douyu.com/432849 

天池直播间  http://t.cn/RnQPhuY

IT大咖说 http://www.itdks.com/eventlist/detail/1992

登录查看更多
10

相关内容

【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
203+阅读 · 2020年5月22日
《强化学习》简介小册,24页pdf
专知会员服务
274+阅读 · 2020年4月19日
干货书《数据科学数学系基础》2020最新版,266页pdf
专知会员服务
321+阅读 · 2020年3月23日
中科大-人工智能方向专业课程2020《脑与认知科学导论》
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
105+阅读 · 2020年3月2日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
RL圣经出中文版了
CreateAMind
19+阅读 · 2019年9月13日
548页MIT强化学习教程,收藏备用【PDF下载】
机器学习算法与Python学习
16+阅读 · 2018年10月11日
246 页《统计机器学习与凸优化》教程 PPT 下载
新智元
24+阅读 · 2018年9月21日
强化学习——蒙特卡洛方法介绍
论智
12+阅读 · 2018年6月3日
【推荐】增强学习导论(最新完整版草稿2017.11.5)
机器学习研究会
6+阅读 · 2017年11月23日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
13+阅读 · 2018年1月20日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
RL圣经出中文版了
CreateAMind
19+阅读 · 2019年9月13日
548页MIT强化学习教程,收藏备用【PDF下载】
机器学习算法与Python学习
16+阅读 · 2018年10月11日
246 页《统计机器学习与凸优化》教程 PPT 下载
新智元
24+阅读 · 2018年9月21日
强化学习——蒙特卡洛方法介绍
论智
12+阅读 · 2018年6月3日
【推荐】增强学习导论(最新完整版草稿2017.11.5)
机器学习研究会
6+阅读 · 2017年11月23日
相关论文
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
13+阅读 · 2018年1月20日
Arxiv
4+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员