一文览尽谷歌 ICML 2019 成果

2019 年 6 月 17 日 AI研习社

ICML 2019结束后,大家是否意犹未尽呢?雷锋字幕组成员为你编译整理了 Google ICML 2019 成果集锦,供大家查看学习。

翻译 | 汪鹏、敬爱的勇哥    编辑 | 王立鱼

原文链接:

https://ai.googleblog.com/2019/06/google-at-icml-2019.html

注:文中所示部分录用论文为AI研习社精选论文,完整论文合集请点击阅读原文查看~

机器学习是Google的一个关键战略重点,高度活跃的团队致力于该领域中包括深度学习、经典的算法、探索理论和应用等几乎所有方面的研究。我们利用可扩展的工具和体系结构来构建机器学习系统,使我们能够解决语言、语音、翻译、音乐、视觉处理等领域的科学和工程难题。

作为一个在机器学习研究中的领导者,Google是三十六届机器学习国际会议(ICML 2019)的蓝宝石赞助商(Sapphire Sponsor),该会议是国际机器学习领域的年度盛会,今年的会议将会于本周在加州长滩举办。将有近200名Google员工在会议上发表论文或参与到会后的研讨会中,我们期待与这个巨大的机器学习研究社区的继续合作。  

如果你参加ICML 2019,希望你能来到Google展台了解那些激动人心的工作,看到我们创造性和趣味性的去解决该领域的一些最有趣的挑战,与研究人员一起讨论Google研究足球环境,AdaNet,Google机器人等等。在下面的列表中,您还可以了解更多关于Google论文的信息,这些研究结果将在ICML 2019上发表(Google的附属单位或组织用蓝色高亮显示)。  

  ICML 2019 委员会

Board Members include: Andrew McCallum, Corinna Cortes, Hugo Larochelle, William Cohen(Emeritus)

Senior Area Chairs include: Charles Sutton, Claudio Gentile, Corinna Cortes, Kevin Murphy, Mehryar Mohri, Nati Srebro, Samy Bengio, Surya Ganguli

Area Chairs include: Jacob Abernethy, William Cohen, Dumitru Erhan, Cho-Jui Hsieh, Chelsea Finn, Sergey Levine, Manzil Zaheer, Sergei Vassilvitskii, Boqing Gong, Been Kim, Dale Schuurmans, Danny Tarlow, Dustin Tran, Hanie Sedghi, Honglak Lee, Jasper Snoek, Lihong Li, Minmin Chen, Mohammad Norouzi, Nicolas Le Roux, Phil Long, Sanmi Koyejo, Timnit Gebru, Vitaly Feldman, Satyen Kale, Katherine Heller, Hossein Mobahi, Amir Globerson, Ilya Tolstikhin, Marco Cuturi, Sebastian Nowozin, Amin Karbasi, Ohad Shamir, Graham Taylor

  录用论文

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

  • 作者:Francesco Locatello, Stefan Bauer, Mario Lučić, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf,Olivier Bachem(Recipient of an ICML 2019 Best Paper Award)

  • 论文地址:http://proceedings.mlr.press/v97/locatello19a/locatello19a.pdf

Learning to Groove with Inverse Sequence Transformations

  • 作者:Jon Gillick, Adam Roberts, Jesse Engel, Douglas Eck, David Bamman

  • 论文地址:http://proceedings.mlr.press/v97/gillick19a/gillick19a.pdf

Metric-Optimized Example Weights

  • 作者:Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, Maya Gupta

  • 论文地址:http://proceedings.mlr.press/v97/zhao19b/zhao19b.pdf

HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving

  • 作者:Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, Stewart Wilcox

  • 论文地址:http://proceedings.mlr.press/v97/bansal19a/bansal19a.pdf

Learning to Clear the Market

  • 作者:Weiran Shen, Sebastien Lahaie, Renato Paes Leme

  • 论文地址:http://proceedings.mlr.press/v97/shen19b/shen19b.pdf

Shape Constraints for Set Functions

  • 作者:Andrew Cotter, Maya Gupta, Heinrich Jiang, Erez Louidor, James Muller, Tamann Narayan, Serena Wang, Tao Zhu

  • 论文地址:http://proceedings.mlr.press/v97/cotter19a/cotter19a.pdf

Self-Attention Generative Adversarial Networks

  • 作者:Han Zhang, Ian Goodfellow, Dimitris Metaxas, Augustus Odena

  • 论文地址:http://proceedings.mlr.press/v97/zhang19d/zhang19d.pdf

High-Fidelity Image Generation With Fewer Labels

  • 作者:Mario Lučić, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly

  • 论文地址:http://proceedings.mlr.press/v97/lucic19a/lucic19a.pdf

  • Learning Optimal Linear Regularizers

  • 作者:Matthew Streeter

  • 论文地址:http://proceedings.mlr.press/v97/streeter19a/streeter19a.pdf

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

  • 作者:Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare

  • 论文地址:http://proceedings.mlr.press/v97/gelada19a/gelada19a.pdf

kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection

  • 作者:Lotfi Slim, Clément Chatelain, Chloe-Agathe Azencott, Jean-Philippe Vert

  • 论文地址:http://proceedings.mlr.press/v97/slim19a/slim19a.pdf

Learning from a Learner

  • 作者:Alexis Jacq, Matthieu Geist, Ana Paiva, Olivier Pietquin

  • 论文地址:http://proceedings.mlr.press/v97/jacq19a/jacq19a.pdf

Rate Distortion For Model Compression:From Theory To Practice

  • 作者:Weihao Gao, Yu-Han Liu, Chong Wang, Sewoong Oh

  • 论文地址:http://proceedings.mlr.press/v97/gao19c/gao19c.pdf

An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

  • 作者:Behrooz Ghorbani, Shankar Krishnan, Ying Xiao

  • 论文地址:http://proceedings.mlr.press/v97/ghorbani19b/ghorbani19b.pdf

Graph Matching Networks for Learning the Similarity of Graph Structured Objects

  • 作者:Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli

  • 论文地址:http://proceedings.mlr.press/v97/li19d/li19d.pdf

Subspace Robust Wasserstein Distances

  • 作者:François-Pierre Paty, Marco Cuturi

  • 论文地址:http://proceedings.mlr.press/v97/paty19a/paty19a.pdf

Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints

  • 作者:Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang, Blake Woodworth, Seungil You

  • 论文地址:http://proceedings.mlr.press/v97/cotter19b/cotter19b.pdf

The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study

  • 作者:Daniel Park, Jascha Sohl-Dickstein, Quoc Le, Samuel Smith

  • 论文地址:http://proceedings.mlr.press/v97/park19b/park19b.pdf

A Theory of Regularized Markov Decision Processes

  • 作者:Matthieu Geist, Bruno Scherrer, Olivier Pietquin

  • 论文地址:http://proceedings.mlr.press/v97/geist19a/geist19a.pdf

Area Attention

  • 作者:Yang Li, Łukasz Kaiser, Samy Bengio, Si Si

  • 论文地址:http://proceedings.mlr.press/v97/li19e/li19e.pdf

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

  • 作者:Mingxing Tan, Quoc Le

  • 论文地址:http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

Static Automatic Batching In TensorFlow

  • 作者:Ashish Agarwal

  • 论文地址:http://proceedings.mlr.press/v97/agarwal19a/agarwal19a.pdf

The Evolved Transformer

  • 作者:David So, Quoc Le, Chen Liang

  • 论文地址:http://proceedings.mlr.press/v97/so19a/so19a.pdf

Policy Certificates: Towards Accountable Reinforcement Learning

  • 作者:Christoph Dann, Lihong Li, Wei Wei, Emma Brunskill

  • 论文地址:http://proceedings.mlr.press/v97/dann19a/dann19a.pdf

Self-similar Epochs: Value in Arrangement

作者:Eliav Buchnik, Edith Cohen, Avinatan Hasidim, Yossi Matias

  • 论文地址:http://proceedings.mlr.press/v97/buchnik19a/buchnik19a.pdf

The Value Function Polytope in Reinforcement Learning

  • 作者:Robert Dadashi, Marc G. Bellemare, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans

  • 论文地址:http://proceedings.mlr.press/v97/dadashi19a/dadashi19a.pdf

Adversarial Examples Are a Natural Consequence of Test Error in Noise

  • 作者:Justin Gilmer, Nicolas Ford, Nicholas Carlini, Ekin Cubuk

  • 论文地址:http://proceedings.mlr.press/v97/gilmer19a/gilmer19a.pdf

SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

  • 作者:Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, Sergey Levine

  • 论文地址:http://proceedings.mlr.press/v97/zhang19m/zhang19m.pdf

Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits

  • 作者:Branislav Kveton, Csaba Szepesvari, Sharan Vaswani, Zheng Wen, Tor Lattimore, Mohammad Ghavamzadeh

  • 论文地址:http://proceedings.mlr.press/v97/kveton19a/kveton19a.pdf

Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition

  • 作者:Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, Colin Raffel

  • 论文地址:http://proceedings.mlr.press/v97/qin19a/qin19a.pdf

Direct Uncertainty Prediction for Medical Second Opinions

  • 作者:Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Bobby Kleinberg, Sendhil Mullainathan, Jon Kleinberg

  • 论文地址:http://proceedings.mlr.press/v97/raghu19a/raghu19a.pdf

A Large-Scale Study on Regularization and Normalization in GANs

  • 作者:Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly

  • 论文地址:http://proceedings.mlr.press/v97/kurach19a/kurach19a.pdf

Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling

  • 作者:Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix Yu, Daniel Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, Sanjiv Kumar

  • 论文地址:http://proceedings.mlr.press/v97/wu19b/wu19b.pdf

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks

  • 作者:Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, Boqing Gong

  • 论文地址:http://proceedings.mlr.press/v97/li19g/li19g.pdf

Distributed Weighted Matching via Randomized Composable Coresets

  • 作者:Sepehr Assadi, Mohammad Hossein Bateni, Vahab Mirrokni

  • 论文地址:http://proceedings.mlr.press/v97/assadi19a/assadi19a.pdf

Monge blunts Bayes: Hardness Results for Adversarial Training

  • 作者:Zac Cranko, Aditya Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian Walder

  • 论文地址:http://proceedings.mlr.press/v97/cranko19a/cranko19a.pdf

Generalized Majorization-Minimization

  • 作者:Sobhan Naderi Parizi, Kun He, Reza Aghajani, Stan Sclaroff, Pedro Felzenszwalb

  • 论文地址:http://proceedings.mlr.press/v97/parizi19a/parizi19a.pdf

NAS-Bench-101: Towards Reproducible Neural Architecture Search

  • 作者:Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, Frank Hutter

  • 论文地址:http://proceedings.mlr.press/v97/ying19a/ying19a.pdf

Variational Russian Roulette for Deep Bayesian Nonparametrics

  • 作者:Kai Xu, Akash Srivastava, Charles Sutton

  • 论文地址:http://proceedings.mlr.press/v97/xu19e/xu19e.pdf

Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization

  • 作者:Zhenxun Zhuang, Ashok Cutkosky, Francesco Orabona

  • 论文地址:http://proceedings.mlr.press/v97/zhuang19a/zhuang19a.pdf

Improved Parallel Algorithms for Density-Based Network Clustering

  • 作者:Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrović

  • 论文地址:http://proceedings.mlr.press/v97/ghaffari19a/ghaffari19a.pdf

The Advantages of Multiple Classes for Reducing Overfitting from Test Set Reuse

  • 作者:Vitaly Feldman, Roy Frostig, Moritz Hardt

  • 论文地址:http://proceedings.mlr.press/v97/feldman19a/feldman19a.pdf

Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity

  • 作者:Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, Amin Karbasi

  • 论文地址:http://proceedings.mlr.press/v97/kazemi19a/kazemi19a.pdf

Hiring Under Uncertainty

  • 作者:Manish Purohit, Sreenivas Gollapudi, Manish Raghavan

  • 论文地址:http://proceedings.mlr.press/v97/purohit19a/purohit19a.pdf

A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes

  • 作者:Jennifer Gillenwater, Alex Kulesza, Zelda Mariet, Sergei Vassilvtiskii

  • 论文地址:http://proceedings.mlr.press/v97/gillenwater19a/gillenwater19a.pdf

Statistics and Samples in Distributional Reinforcement Learning

  • 作者:Mark Rowland, Robert Dadashi, Saurabh Kumar, Remi Munos, Marc G. Bellemare, Will Dabney

  • 论文地址:http://proceedings.mlr.press/v97/rowland19a/rowland19a.pdf

Provably Efficient Maximum Entropy Exploration

  • 作者:Elad Hazan, Sham Kakade, Karan Singh, Abby Van Soest

  • 论文地址:http://proceedings.mlr.press/v97/hazan19a/hazan19a.pdf

Active Learning with Disagreement Graphs

  • 作者:Corinna Cortes, Giulia DeSalvo,, Mehryar Mohri, Ningshan Zhang, Claudio Gentile

  • 论文地址:http://proceedings.mlr.press/v97/cortes19b/cortes19b.pdf

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing

  • 作者:Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan

  • 论文地址:http://proceedings.mlr.press/v97/abu-el-haija19a/abu-el-haija19a.pdf

Understanding the Impact of Entropy on Policy Optimization

  • 作者:Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans

  • 论文地址:http://proceedings.mlr.press/v97/ahmed19a/ahmed19a.pdf

Matrix-Free Preconditioning in Online Learning

  • 作者:Ashok Cutkosky, Tamas Sarlos

  • 论文地址:http://proceedings.mlr.press/v97/cutkosky19b/cutkosky19b.pdf

State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations

  • 作者:Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas, Yoshua Bengio, Michael Mozer

  • 论文地址:http://proceedings.mlr.press/v97/lamb19a/lamb19a.pdf

Online Convex Optimization in Adversarial Markov Decision Processes

  • 作者:Aviv Rosenberg, Yishay Mansour

  • 论文地址:http://proceedings.mlr.press/v97/rosenberg19a/rosenberg19a.pdf

Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy

  • 作者:Kareem Amin, Alex Kulesza, Andres Munoz Medina, Sergei Vassilvtiskii

  • 论文地址:http://proceedings.mlr.press/v97/amin19a/amin19a.pdf

Complementary-Label Learning for Arbitrary Losses and Models

  • 作者:Takashi Ishida, Gang Niu, Aditya Menon, Masashi Sugiyama

  • 论文地址:http://proceedings.mlr.press/v97/ishida19a/ishida19a.pdf

Learning Latent Dynamics for Planning from Pixels

  • 作者:Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, James Davidson

  • 论文地址:http://proceedings.mlr.press/v97/hafner19a/hafner19a.pdf

Unifying Orthogonal Monte Carlo Methods

  • 作者:Krzysztof Choromanski, Mark Rowland, Wenyu Chen, Adrian Weller

  • 论文地址:http://proceedings.mlr.press/v97/choromanski19a/choromanski19a.pdf

Differentially Private Learning of Geometric Concepts

  • 作者:Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer

  • 论文地址:http://proceedings.mlr.press/v97/kaplan19a/kaplan19a.pdf

Online Learning with Sleeping Experts and Feedback Graphs

  • 作者:Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Scott Yang

  • 论文地址:http://proceedings.mlr.press/v97/cortes19a/cortes19a.pdf

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

  • 作者:Michal Kempka, Wojciech Kotlowski, Manfred K. Warmuth

  • 论文地址:http://proceedings.mlr.press/v97/kempka19a/kempka19a.pdf

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

  • 作者:Augustus Odena, Catherine Olsson, David Andersen, Ian Goodfellow

  • 论文地址:http://proceedings.mlr.press/v97/odena19a/odena19a.pdf


文中所示部分录用论文为AI研习社精选论文,完整论文合集请点击阅读原文查看~


滑动查看更多内容


扫码下载 CVPR 2019 论文合集

赶紧来围观CVPR

CVPR 2019 Accepted Papers

扫码查看论文推荐

《用于全景分割的端到端闭环网络》

扫码查看

视频目标检测大列表

<<  滑动查看更多栏目  >>

 点击阅读原文,查看本文更多内容

登录查看更多
2

相关内容

ICML 是 International Conference on Machine Learning的缩写,即国际机器学习大会。ICML如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
一文览尽 Facebook ICML 2019 成果集锦
AI研习社
18+阅读 · 2019年6月14日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
一文览尽 Facebook ICML 2019 成果集锦
AI研习社
18+阅读 · 2019年6月14日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
相关论文
Top
微信扫码咨询专知VIP会员