转载自:Datawhale(ID:Datawhale)
作者:阿泽
本文主要介绍基于集成学习的决策树,其主要通过不同学习框架生产基学习器,并综合所有基学习器的预测结果来改善单个基学习器的识别率和泛化性。
集成学习
常见的集成学习框架有三种:Bagging、Boosting 和 Stacking。三种集成学习框架在基学习器的产生和综合结果的方式上会有些区别,我们先做些简单的介绍。
偏差与方差
上节介绍了集成学习的基本概念,这节我们主要介绍下如何从偏差和方差的角度来理解集成学习。
2.1 集成学习的偏差与方差
偏差(Bias)描述的是预测值和真实值之差;方差(Variance)描述的是预测值作为随机变量的离散程度。放一场很经典的图:
模型的偏差与方差
偏差:描述样本拟合出的模型的预测结果的期望与样本真实结果的差距,要想偏差表现的好,就需要复杂化模型,增加模型的参数,但这样容易过拟合,过拟合对应上图的 High Variance,点会很分散。低偏差对应的点都打在靶心附近,所以喵的很准,但不一定很稳;
方差:描述样本上训练出来的模型在测试集上的表现,要想方差表现的好,需要简化模型,减少模型的复杂度,但这样容易欠拟合,欠拟合对应上图 High Bias,点偏离中心。低方差对应就是点都打的很集中,但不一定是靶心附近,手很稳,但不一定瞄的准。
我们常说集成学习中的基模型是弱模型,通常来说弱模型是偏差高(在训练集上准确度低)方差小(防止过拟合能力强)的模型。但是,并不是所有集成学习框架中的基模型都是弱模型。Bagging 和 Stacking 中的基模型为强模型(偏差低方差高),Boosting 中的基模型为弱模型。
2.3 Boosting 的偏差与方差
对于 Boosting 来说,基模型的训练集抽样是强相关的,那么模型的相关系数近似等于 1,故我们也可以针对 Boosting 化简公式为:
通过观察整体方差的表达式我们容易发现:
整体模型的方差等于基模型的方差,如果基模型不是弱模型,其方差相对较大,这将导致整体模型的方差很大,即无法达到防止过拟合的效果。因此,Boosting 框架中的基模型必须为弱模型。
此外 Boosting 框架中采用基于贪心策略的前向加法,整体模型的期望由基模型的期望累加而成,所以随着基模型数的增多,整体模型的期望值增加,整体模型的准确度提高。
基于 Boosting 框架的 Gradient Boosting Decision Tree 模型中基模型也为树模型,同 Random Forrest,我们也可以对特征进行随机抽样来使基模型间的相关性降低,从而达到减少方差的效果。
2.4 小结
我们可以使用模型的偏差和方差来近似描述模型的准确度;
对于 Bagging 来说,整体模型的偏差与基模型近似,而随着模型的增加可以降低整体模型的方差,故其基模型需要为强模型;
对于 Boosting 来说,整体模型的方差近似等于基模型的方差,而整体模型的偏差由基模型累加而成,故基模型需要为弱模型。
Random Forest
Random Forest(随机森林),用随机的方式建立一个森林。RF 算法由很多决策树组成,每一棵决策树之间没有关联。建立完森林后,当有新样本进入时,每棵决策树都会分别进行判断,然后基于投票法给出分类结果。
3.1 思想
Random Forest(随机森林)是 Bagging 的扩展变体,它在以决策树为基学习器构建 Bagging 集成的基础上,进一步在决策树的训练过程中引入了随机特征选择,因此可以概括 RF 包括四个部分:
随机选择样本和 Bagging 相同,采用的是 Bootstrap 自助采样法;随机选择特征是指在每个节点在分裂过程中都是随机选择特征的(区别与每棵树随机选择一批特征)。
这种随机性导致随机森林的偏差会有稍微的增加(相比于单棵不随机树),但是由于随机森林的“平均”特性,会使得它的方差减小,而且方差的减小补偿了偏差的增大,因此总体而言是更好的模型。
随机采样由于引入了两种采样方法保证了随机性,所以每棵树都是最大可能的进行生长就算不剪枝也不会出现过拟合。
3.2 优缺点
优点:
AdaBoost
AdaBoost(Adaptive Boosting,自适应增强),其自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。
4.1 思想
Adaboost 迭代算法有三步:
4.2 细节
4.2.1 损失函数
Adaboost 模型是加法模型,学习算法为前向分步学习算法,损失函数为指数函数的分类问题。
加法模型:最终的强分类器是由若干个弱分类器加权平均得到的。
前向分布学习算法:算法是通过一轮轮的弱学习器学习,利用前一个弱学习器的结果来更新后一个弱学习器的训练集权重。第 k 轮的强学习器为:
损失函数:
利用前向分布学习算法的关系可以得到损失函数为:
令
它的值不依赖于
,因此与最小化无关,仅仅依赖于
,随着每一轮迭代而将这个式子带入损失函数,损失函数转化为:
我们求 ,可以得到:
将
带入损失函数,并对 \alpha 求导,使其等于 0,则就得到了:
为了防止 Adaboost 过拟合,我们通常也会加入正则化项,这个正则化项我们通常称为步长(learning rate)。定义为 v,对于前面的弱学习器的迭代:
4.3 优缺点
优点:
缺点:
GBDT
GBDT(Gradient Boosting Decision Tree)是一种迭代的决策树算法,该算法由多棵决策树组成,从名字中我们可以看出来它是属于 Boosting 策略。GBDT 是被公认的泛化能力较强的算法。
5.1 思想
GBDT 由三个概念组成:Regression Decision Tree(即 DT)、Gradient Boosting(即 GB)和SHringkage(一个重要演变)。
5.1.1 回归树(Regression Decision Tree)
如果认为 GBDT 由很多分类树那就大错特错了(虽然调整后也可以分类)。对于分类树而言,其值加减无意义(如性别),而对于回归树而言,其值加减才是有意义的(如说年龄)。GBDT 的核心在于累加所有树的结果作为最终结果,所以 GBDT 中的树都是回归树,不是分类树,这一点相当重要。
回归树在分枝时会穷举每一个特征的每个阈值以找到最好的分割点,衡量标准是最小化均方误差。
5.1.2 梯度迭代(Gradient Boosting)
上面说到 GBDT 的核心在于累加所有树的结果作为最终结果,GBDT 的每一棵树都是以之前树得到的残差来更新目标值,这样每一棵树的值加起来即为 GBDT 的预测值。
模型的预测值可以表示为: