干货 | 论文解读:基于动态词表的对话生成研究

2018 年 1 月 9 日 微软研究院AI头条 PaperWeekly



编者按:近年来,聊天机器人在飞速发展,很多人也对机器人的对话系统产生了很大兴趣。近期,北京航空航天大学—微软亚洲研究院联合培养博士生吴俣应邀参加了PaperWeekly优质论文线上直播分享活动,带大家回顾了近几年来聊天机器人的发展,对比了检索式和生成式聊天机器人的优缺点,并以第一作者的身份解读了北京航空航天大学和微软亚洲研究院在AAAI 2018上发表的有关基于动态词表对话生成研究的论文Neural Response Generation with Dynamic Vocabularies。 一起来看看吧!文章转载自公众号“PaperWeekly”。


分享实录回放


浅析对话系统



对话系统主要分为两类,一类是任务型,另一类是非任务型。任务型对话系统主要应用于企业客服、订票、天气查询等场景,非任务型驱动对话系统则是指以微软小冰为代表的聊天机器人形式。 


之所以强调这一点,是因为今年我在ACL发表了一篇论文,有同学发邮件问我为什么参考了论文和源代码,还是无法让聊天机器人帮忙订披萨。我只能说,目前聊天机器人实在种类繁多,有的机器人只负责闲聊,有的机器人可以帮你完成某些特定任务。 


本次 Talk 会更侧重于介绍闲聊机器人,也就是非任务驱动型对话系统。首先我想给大家推荐一篇关于聊天机器人的综述文章 — A Survey on Dialogue Systems: Recent Advances and New Frontiers。


这篇文章来自京东数据科学团队,是一篇较为全面的对话系统综述,其中引用了 121 篇相关论文,并对论文进行了归类。不仅非常适合初学者,也能让大家对聊天机器人领域有一个更为全面的认识。


面向任务的对话系统主要分为知识库构造、自然语言理解、状态跟踪和策略选择。针对知识库构造,假设我们的使用场景为酒店预订,那首先我们需要构建一些和酒店相关的知识,比如酒店房型、报价以及酒店位置。


具备了这些基础知识之后,接下来就需要展开对话,通过自然语言理解去分辨问题类型(酒店类型、房间类型等)。确认好相关类型后,我们需要借助 policy 模块,让系统切换到下一个需要向用户确认的信息。更直观地说,我们需要循循善诱引导用户将右表信息填写完整。


聊天机器人类型



普遍来说,聊天机器人主要分为两类,我认为准确来说应该分为三类。


比较早期的研究基本属于第一类:基于模板的聊天机器人,它会定义一些规则,对你的话语进行分析得到某些实体,然后再将这些实体和已经定义好的规则去进行组合,从而给出回复。这类回复往往都是基于模板的,比如说填空。


除了聊天机器人,这种基于模板的文本形成方式还可以应用于很多其他领域,比如自动写稿机器人。


目前比较热门的聊天机器人应该是另外两类,一类是检索型,另一类则是生成型。检索型聊天机器人,主要是指从事先定义好的索引中进行搜索。这需要我们先从互联网上获取一些对话 pairs,然后基于这些数据构造一个搜索引擎,再根据文本相似度进行查找。


生成型聊天机器人目前是研究界的一个热点。和检索型聊天机器人不同的是,它可以生成一种全新的回复,因此相对更为灵活。但它也有自身的缺点,就像图中的婴儿那样,它有时候会出现语法错误,或者生成一些没营养的回复。



检索型聊天机器人首先需要构建一些文本和回复的 pairs,然后再训练匹配模型,上线之后先做检索再做匹配。相似度算法有很多种选择,现在一般都采用深度学习,如果是做系统的话,肯定需要融合很多相似度的特征。



生成模型大多都是基于 Seq2Seq 框架进行修改,所谓万变不离其宗,不管大家怎么做,都会是以这个框架为基础。文本生成也是如此,在 RNN 语言模型和 Seq2Seq 出来之后,几乎所有生成模型都是基于这个框架。即使把 RNN 换成 CNN 或 Attention is All You Need,也仍然离不开这个框架。



检索型VS生成型


检索型聊天机器人的最大优点在于它的回复多样且流畅,其次,这个系统对编程者的入门门槛较低。即使你对深度学习和自然语言处理不甚了解,但只要你善于写代码,并且能从网上抓取一定量的数据,就可以搭建一个检索型聊天机器人。


另外,对于研究人员来说,检索型聊天机器人比较易于评测,借助 MAP、MRR、NDCG 等传统信息检索方法即可完成。 


检索型聊天机器人的缺点在于它过于依赖数据质量。如果你抓取的数据质量欠佳,那就很有可能前功尽弃。


就工业界来说,要评估某个检索型聊天机器人,首先我们会看其背后的排序算法,其次不能忽略的则是数据质量和规模,最后再看其回复数据是否足够有趣,以上几个因素共同决定着检索型聊天机器人的整体质量。 


生成模型的最大优势在于有一套通用 code,可以忽略语言直接开跑。只要在某种语言上跑得较为顺利,就可以将其应用到所有语言上。


很多人认为 safe responses 是生成式聊天机器人的一个缺点,但其实从某种角度上来说,这也是它的一个优点。相比检索型聊天机器人,它生成的回复质量较为稳定。


生成模型的另一个优点是,它非常容易实现多轮对话,并且能够偏向于某种情感。假设我希望生成一句高兴的话,那么用生成模型会比检索模型更容易实现。 


对于早期的研究者来说,生成模型的最大缺点在于它的回复较为单一。其次,由于缺乏自动评评测手段,研究人员难以对生成式聊天机器人进行评估。一个模型的好坏,更多需要靠人进行标注。此外,对工业界而言,生成式聊天机器人的门槛会相对较高。



怎样提高生成的多样性


第一种方法是将模型做得更复杂,比如上图这篇论文使用了 latent variable 来解决 boring responses 这个问题。

上图中的论文,则是在生成时将概率 bias 到一些特定的主题词。假设某个词是主题词,我们就在生成过程中相应提高它被选中的概率。


第二个流派是采用重排序方法,目前最简单有效的方法是先用生成模型生成大量回复,再用分类器对回复进行排序,排名越靠前效果越好。只要生成的回复数量够多,该方法就一定可行。

第三种方法是基于增强学习的。增强学习有两种不同方法,一种基于策略,另一种基于价值。


基于策略的代表作来自李纪为,其基本思路是:假设已有生成模型 G,给定一个 input 并生成 20 个回复,利用排序公式 P(S|T) + λP(T|S) 对回复进行评分作为 reward。Reward 值越大,梯度更新则相应越大。 


我们再来看看 GAN 的相关方法。李纪为对 SeqGAN 的模型加以改进,将其用在了回复生成上。


其基本思路是,每生成一个词的同时,用搜索的方法去搜索其最后生成的完整句子,然后用 discriminator D 对其进行评分,分值越高,意味着词的 reward 也越高。之后的思路则跟 SeqGAN 一模一样。


本文思路



我们做这篇论文的初衷,是为了提出一种不借助繁重工具或算法的回复生成方法。因为无论是复杂模型、后排序、增强学习还是 GAN,都属于一种用时间换精度的方法。 


我们希望在避免产生大量时间开销的同时,还能提高回复生成的质量。提升效率的关键在于 Seq2Seq 的最后一层 — 投影层,这个投影往往会是一个大型矩阵。


我们认为其实没有必要形成这个大型矩阵,因为有用词汇仅有很小一部分,而这一小部分词汇就足够生成一句非常流畅、高度相关的话。比如对“的地得”这类功能词和与 input 相关度较高的词做一个并集,就可以仅用一个小规模字典生成极为流畅的有效回复。 


详细来说,我们会给每一个 input 构建一个动态词典。这么做的目的是为了减少在线 decoding 时间,同时对不相关词进行剔除。



本文其实是在 Seq2Seq 的基础上加了一个动态词表,每给一个 input,我们会生成两类词。


第一类词的生成完全基于规则,即静态词典。静态词典主要包含一些功能词,功能词主要起润滑剂的作用,它们能让一句话的语法变得通畅。静态词典是基于词性构建的,主要包含代词和助词,名词和动词不包含在内。 


第二类词是内容词,即动态词典。动态词典是根据 input 猜测与其相关的词,即我们可以用哪些词对 input 进行回复。这个词典的构建不能再像静态词典那样基于词性,而是要借助分类器或词预测模型,预测哪些词和已给定的 input 相关。 


有了这两个词之后,我们就可以给每个 input 构建一个词典。这个词典的规模会很小,很小的概念是指原来的词典规模是 3 万,现在能缩减到 1000-2000 这个量级。


从矩阵乘法角度来看,如果能把一个矩阵从 N 乘以三万的维度,缩减到 N 乘以一千的维度,就可以大大提升矩阵乘法的运算速度。


词预测模型


接下来我们来看如何做词预测,即如何对内容词(content words)进行预测。内容词的 input vector 是 encoder 生成的 vector。有了 vector 后,我们需要过一个回归模型(MLP),继而预测需要用到哪些词。这个预测的损失就是将最后出现在回复里的词作为正例(标签为 1),再随机采样一些负例作为 0 标签的词,从而进行预测。 


如何采样负例非常关键。剔除掉一句话中的功能词,大概会剩下 10-15 个正例的词。我们需要通过频率对负例进行采样,如果一个词经常出现,那么它被采样为负例的几率就会很大。 


通过对负例进行采样,我们在进行词预测时,可以更准确地预测出内容词是什么。反之,这个词预测模型会跟 Seq2Seq 生成回复模型出现同样的问题,即总是出现高频词。只有利用频率对负例进行采样,才能让高频词在构建词典时就被剔除。



时间复杂度




在介绍完词预测方法后,我们来看时间复杂度的计算,即以什么样的速度进行 decoding。


首先将 Seq2Seq 和本文的 decoding 方法进行对比,可以发现二者在 GRU 和 Attention 上花费的时间完全一致,但是本文方法在 Projection 上花的时间会少很多


原因在于 Seq2Seq 的 vocabulary size 通常都很大,比如 3 万这种级别乘出来的数。而本文这个 T 可能只有几千,并且我们无需为每个词建立一个表,而是为每一句话建立一个表。因此,我们构建词典的时间开销要远小于从全局字典里进行词预测。


当然,这种情况的前提是回复词数需大于 1。当回复词数等于 1 时,即逐词预测,本文方法反而会比 Seq2Seq 变得更慢。也就是说,在词的数量越多的时候,词典规模越小,节省的时间也就越多。


经实验证明,这种方法相比 Seq2Seq 能节省约 40% 的时间


模型训练




如果只对动态词典进行训练,将导致训练和预测的时候出现一些 gap。即使在训练的时候就采用动态词表这种方法,也依然会面临一个问题,就是你不知道选词这个过程会对你做回复造成什么影响。


为了解决这个问题,我们在训练时选择将动态词典作为一个隐变量来处理。针对公式的详细推导,大家可以参考论文。 


由于是隐变量,假设动态词典 T 是完全变例,即一个词有选或者不选这两种可能。如果有 3 万个词,那么 T 就有 2 的三万次方这么大,因此这种方法是不可行的。那我们应该怎么做呢?


我们可以通过蒙特卡洛采样的方法,来估计词典会对回复产生什么影响。我把变成了真正采样,相当于采样 S 次,且对每次所出结果都进行一次计算,然后对结果进行平均。 


这样一来,我们就可以把词典构建和回复生成这两个损失串在一起,相当于放入一同一个公式里表示,而不是将词典和生成分开单独训练。利用逐次采样得出的结果,来评估动态词典在不同情况下,其相对应的回复生成的损失是什么。 


由于这个损失是通过采样得出,因此它会和 RL 一样存在 variance。因此我们加了一个 baseline BK 用于梯度更新,从而使训练更为稳定。



实验



本文实验所用数据来自我们之前的一篇文章,这些词可以覆盖约 99% 的词。

本文使用的开源 baseline


目前研究界仍未找到一个很好的自动指标,能用于回复生成或对话评测。


现有的方法可分为四类:


第一类方法是计算 BLEU 值,也就是直接计算 word overlap、ground truth 和你生成的回复。由于一句话可能存在多种回复,因此从某些方面来看,BLEU 可能不太适用于对话评测。


第二类方法是计算 embedding 的距离,这类方法分三种情况:直接相加求平均、先取绝对值再求平均和贪婪匹配。


第三类方法是衡量多样性,主要取决于 distinct-ngram 的数量和 entropy 值的大小。


最后一种方法是图灵测试,用 retrieval 的 discriminator 来评价回复生成。



表 1 中的前四行是 baseline,DVS2S 是将词预测和 Seq2Seq 的损失串在一起计算,S-DVS2S 则是对这两个 loss 分别进行计算。从结果可以看出,DVS2S 的效果均优于其他方法。 


表 2 是人工标注结果,数值 0 和 2 分别代表最差效果和最优效果,Kappa 则指三者的一致性。人工标注得到的 Kappa 值通常较低,也就是说,即使让真人来进行评测,也很难得到一致性的评价。


速度对比:本文模型可节省40%的时间

案例效果对比


总结

首先,我们将静态词典换成了动态词典,用于聊天机器人中的回复生成。其次,我们提出了一种全新的方法,将词预测损失和回复生成的损失融入到同一个损失函数,以 joint 的方式对这个函数进行优化。最后,我们基于一个大规模数据集,对本文模型的效率和效果进行了验证。


你也许还想


  干货 | NIPS 2017:用于序列生成的推敲网络

  干货 | NIPS 2017线上分享:利用价值网络改进神经机器翻译

  书单 | NLP秘笈,从入门到进阶



感谢你关注“微软研究院AI头条”,我们期待你的留言和投稿,共建交流平台。来稿请寄:msraai@microsoft.com。



登录查看更多
3

相关内容

Chatbot,聊天机器人。 chatbot是场交互革命,也是一个多技术融合的平台。上图给出了构建一个chatbot需要具备的组件,简单地说chatbot = NLU(Natural Language Understanding) + NLG(Natural Language Generation)。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【哈工大】基于抽取的高考作文生成
专知会员服务
36+阅读 · 2020年3月10日
【综述】基于图的对抗式攻击和防御,附22页论文下载
专知会员服务
68+阅读 · 2020年3月5日
专知会员服务
87+阅读 · 2020年1月20日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
78+阅读 · 2019年10月12日
最新论文解读 | 基于预训练自然语言生成的文本摘要方法
微软研究院AI头条
57+阅读 · 2019年3月19日
论文浅尝 | 基于图注意力的常识对话生成
开放知识图谱
8+阅读 · 2019年2月5日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
一文读懂智能对话系统
数据派THU
16+阅读 · 2018年1月27日
赛尔译文 | 对话系统综述:新进展新前沿
哈工大SCIR
9+阅读 · 2017年11月17日
干货 | 利用深度强化学习进行对话生成
黑龙江大学自然语言处理实验室
4+阅读 · 2017年8月30日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
15+阅读 · 2019年6月25日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关资讯
最新论文解读 | 基于预训练自然语言生成的文本摘要方法
微软研究院AI头条
57+阅读 · 2019年3月19日
论文浅尝 | 基于图注意力的常识对话生成
开放知识图谱
8+阅读 · 2019年2月5日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
一文读懂智能对话系统
数据派THU
16+阅读 · 2018年1月27日
赛尔译文 | 对话系统综述:新进展新前沿
哈工大SCIR
9+阅读 · 2017年11月17日
干货 | 利用深度强化学习进行对话生成
黑龙江大学自然语言处理实验室
4+阅读 · 2017年8月30日
相关论文
Arxiv
4+阅读 · 2019年9月26日
Arxiv
15+阅读 · 2019年6月25日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
3+阅读 · 2012年11月20日
Top
微信扫码咨询专知VIP会员