首先,我们来验证第一个可能性:共同的任务经验。这里,我们选择AlexNet。AlexNet也是预训练网络,它不做面孔识别而做物体分类,我们把最后一层微调,让它做识别男性和女性的分类任务,正确率93%。即,虽然AlexNet是用来训练物体分类的,但是也能够把男性和女性区分,正确率也相当高。现在问一个有趣的问题,AlexNet在性别辨认上也能达到和人一样的准确度,但是AlexNet用的是和人类似的表征吗?我们来看AlexNet辨别男性和女性的特征图,如下图所示,肉眼能够辨别两者存在非常大差别,基本不相关,相关度等于-0.04。我们把它叠加到原来的基底图上去,得到的人脸也没有明显的性别特征。所以从这个角度来讲,我们发现AlexNet虽然能够区分男性和女性,但是它所用的表征是完全不一样的。我们做进一步的空间频率分析,把噪音特征图分为不同的空间频率,可以看到,基本上AlexNet和人类的各频率的噪音特征图是不相关的。回到实验的第一部分结论,我们发现预训练任务非常重要。为什么VGG-Face和人类在区分男性女性时用的表征是相似的?因为它们都被训练在个体层面上进行加工,而AlexNet是在类的层面上进行加工,从这个角度来讲,导致它们使用呢不同的表征。这一点我们可以从进化的角度来理解。我们之所以从单细胞变成现在多细胞的动物,就是因为我们在不断地完成大自然交给我们的任务;一旦完成不了,那只有一个结果,就是基因被淘汰。也就是说,we are what we do。我们的智能是被我们过去所完成的任务所决定的。