零样本学习研究进展综述中文版,自动化学报

2020 年 1 月 28 日 专知

摘要: 近几年来, 深度学习在机器学习研究领域中取得了巨大的突破, 深度学习能够很好地实现复杂问题的学习, 然而, 深度学习最大的弊端之一, 就是需要大量人工标注的训练数据, 而这需要耗费大量的人力成本.因此, 为了缓解深度学习存在的这一问题, Palatucci等于2009年提出了零样本学习(Zero-shot learning).零样本学习是迁移学习的一种特殊场景, 在零样本学习过程中, 训练类集和测试类集之间没有交集, 需要通过训练类与测试类之间的知识迁移来完成学习, 使在训练类上训练得到的模型能够成功识别测试类输入样例的类标签.零样本学习的意义不仅在于可以对难以标注的样例进行识别, 更在于这一方法模拟了人类对于从未见过的对象的认知过程, 零样本学习方法的研究, 也会在一定程度上促进认知科学的研究.鉴于零样本学习的应用价值、理论意义和未来的发展潜力, 文中系统综述了零样本学习的研究进展, 首先概述了零样本学习的定义, 介绍了4种典型的零样本学习模型, 并对零样本学习存在的关键问题及解决方法进行了介绍, 对零样本学习的多种模型进行了分类和阐述, 并在最后指明了零样本学习进一步研究中需要解决的问题以及未来可能的发展方向.



地址:

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c180429


便捷查看下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“零样本” 就可以获取零样本学习研究进展》下载链接


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资料
登录查看更多
4

相关内容

零样本学习是AI识别方法之一。简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别,还可以对于来自未见过的类别的数据进行区分。这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据,很符合现实生活中海量类别的存在形式。
专知会员服务
109+阅读 · 2020年5月21日
专知会员服务
111+阅读 · 2020年3月20日
【自动化学报】零样本学习研究进展,中国石油大学
专知会员服务
88+阅读 · 2020年1月27日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
39+阅读 · 2019年12月5日
零样本图像分类综述 : 十年进展
专知会员服务
128+阅读 · 2019年11月16日
新加坡南洋理工最新37页《零样本学习综述》论文
专知会员服务
114+阅读 · 2019年10月20日
自动机器学习:最新进展综述
专知会员服务
120+阅读 · 2019年10月13日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
80+阅读 · 2019年10月12日
零样本图像识别综述论文
专知
21+阅读 · 2020年4月4日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
最新《生成式对抗网络GAN进展》论文
专知
95+阅读 · 2019年4月5日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
136+阅读 · 2018年10月8日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关VIP内容
专知会员服务
109+阅读 · 2020年5月21日
专知会员服务
111+阅读 · 2020年3月20日
【自动化学报】零样本学习研究进展,中国石油大学
专知会员服务
88+阅读 · 2020年1月27日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
39+阅读 · 2019年12月5日
零样本图像分类综述 : 十年进展
专知会员服务
128+阅读 · 2019年11月16日
新加坡南洋理工最新37页《零样本学习综述》论文
专知会员服务
114+阅读 · 2019年10月20日
自动机器学习:最新进展综述
专知会员服务
120+阅读 · 2019年10月13日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
80+阅读 · 2019年10月12日
相关论文
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
136+阅读 · 2018年10月8日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
15+阅读 · 2018年4月3日
Top
微信扫码咨询专知VIP会员