STCN

2019 年 3 月 11 日 CreateAMind



https://www.arxiv-vanity.com/papers/1902.06568/


ABSTRACT

Convolutional architectures have recently been shown to be competitive on many sequence modelling tasks when compared to the de-facto standard of recurrent neural networks (RNNs), while providing computational and modeling advan- tages due to inherent parallelism. However, currently there remains a performance gap to more expressive stochastic RNN variants, especially those with several lay- ers of dependent random variables. In this work, we propose stochastic temporal convolutional networks (STCNs), a novel architecture that combines the computa- tional advantages of temporal convolutional networks (TCN) with the 

representational power and robustness of stochastic latent spaces. In particular, we propose a 

hierarchy of stochastic latent variables that captures temporal dependencies at different time-scales. The architecture is modular and flexible due to decoupling of deterministic and stochastic layers. We show that the proposed architecture achieves state of the art log-likelihoods across several tasks. Finally, the model is capable of predicting high-quality synthetic samples over a long-range temporal horizon in modeling of handwritten text. 





Our contributions can thus be summarized as: 1) We present a modular and scalable approach to augment temporal convolutional network models with effective stochastic latent variables. 2) We empirically show that the STCN-dense design prevents the model from ignoring latent variables in the upper layers (Zhao et al., 2017). 3) We achieve state-of-the-art log-likelihood performance, measured by ELBO, on the IAM-OnDB, Deepwriting, TIMIT and the Blizzard datasets. 4) Finally we show that the quality of the synthetic samples matches the significant quantitative improvements. 


https://github.com/emreaksan/stcn





年薪百万来奋斗-骥智CreateAMind2019招聘目标:年薪百万招聘大牛50+ 推荐成功送mate20

登录查看更多
1

相关内容

专知会员服务
61+阅读 · 2020年3月19日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Star-Transformer
Arxiv
5+阅读 · 2019年2月28日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
8+阅读 · 2018年1月19日
Arxiv
10+阅读 · 2017年12月29日
Arxiv
5+阅读 · 2017年9月8日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关VIP内容
相关论文
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Star-Transformer
Arxiv
5+阅读 · 2019年2月28日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
8+阅读 · 2018年1月19日
Arxiv
10+阅读 · 2017年12月29日
Arxiv
5+阅读 · 2017年9月8日
Arxiv
5+阅读 · 2017年7月23日
Top
微信扫码咨询专知VIP会员