CVPR 2022 | 清华提出Point-BERT: 基于掩码建模的点云自注意力模型预训练

2022 年 3 月 21 日 CVer

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

作者:于旭敏   |  已授权转载(源:知乎)编辑:CVer

https://zhuanlan.zhihu.com/p/484336830


在这里和大家分享一下我们被CVPR 2022录用的工作“Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling”

单位:清华大学, 北京智源研究院, 北京大学

项目主页:https://point-bert.ivg-research.xyz/

代码仓库:https://github.com/lulutang0608/Point-BERT

论文:https://arxiv.org/abs/2111.14819


简介:

Transformers在NLP领域中取得了统治级别的表现,从2020年Vision Transformers提出后,Transformers也展现了其在2D视觉任务中的巨大潜力。基于这种统一而简单的网络结构,不少学者也致力于基于这种只包含自注意力机制的Transformers去搭建Unified Model,去同时处理来自语言、图像等不同域的数据(只需要更换不同的Input embedding layer)。但在3D视觉任务中,这种标准Transformers的直接运用却表现不佳,见下图(蓝线),所以现有的Unified Model都暂时没有将3D点云考虑为一种输入模态。在3D任务上的欠佳表现主要是由于标准Transformers中不包含Inductive Bias(归纳偏置),极大地增加了训练难度并提高了对标注数据数量的需求,而3D领域缺乏了如2D领域的ImageNet这样的大规模数据集,这使得不少相关研究通过设计包含丰富几何后验的模块(如kNN等)来减轻标准Transformers对数据的依赖,但这样针对于3D数据特殊的设计,可能使得3D点云Transformers缺少标准Transformers的通用性。

而我们的论文中说明通过利用无标签数据设计自监督训练,即使不改变标准Transformers的原始设计,依然可以在3D任务上达到很好效果,包括在虚拟模型数据集ModelNet与真实Scan数据集ScanObjectNN的物体识别任务,见下图(红线)。

标准Transformers与Point-BERT在模拟数据集和真实扫描数据集上的训练表现曲线

方法:

BERT是NLP领域中目前最成功的Transformers预训练方法之一,它通过构建掩码重建(Masked Language Modeling)等任务来进行自监督训练。如果可以将点云表达为如同语言一样的一组离散“词汇”,我们就可以很自然的借鉴BERT在NLP任务中的成功经验。

于是我们提出首先将点云转化为由“局部结构”构成的集合。在这一步中,我们通过最远点采样与kNN去将点云分成N个局部点云,这些局部点云包含了细节的局部几何信息与结构。为了将这些局部结构编码成为如语言中的“词汇”,我们设计了Tokenizer去进行点云到“词汇”的转换,并在Tokenizer之后接上Decoder构成Discrete VAE (dVAE),通过进行局部点云重建任务的方式来训练该Tokenizer。具体而言,我们将一个点云分为N个局部点云(sub-clouds),对每一个局部点云,我们通过dVAE的Tokenizer将其编码成为一个离散编码(Discrete Token,如“5”),并利用dVAE的Decoder将该离散编码翻译成重建局部点云,通过监督编码重建损失来进行优化。最终,我们可以将任何点云表示为一组离散编码的集合,其中每一个离散编码都对应了一个明确的局部结构(如“5”代表飞机头部的结构,“49”代表了机尾的结构)。举个例子,如下图,我们可以认为,一个飞机被简单、抽象地表达为了{5,26,1967,269,516,49}。这与单词和句子的关系相似,所以我们可以构建属于点云的Masked Point Modeling(MPM)任务,引导Transformers通过可见的点云局部结构,去预测被掩盖掉(masked)的局部结构。

Point-BERT方法概览

我们提出的MPM任务如下图所示。利用训练好的dVAE,我们可以将任意3D物体表达为一个“词汇”集合,这将作为MPM任务的预测目标。Transformers以加过随机掩码(mask)的sub-clouds为输入,通过自注意力机制与前馈神经网络和一个为该任务设计的MPM head,对被掩盖部位的“词汇”进行预测,并与完整点云的离散编码进行对比。该过程可以引导Transformers学习不同局部之间的关系,并利用局部关系进行被掩盖部位的预测。为了同时保证Transformers对语义信息的学习,我们也加入了Class Token,来输出点云的全局特征,并加入对比学习损失进行监督。为了增强样本的多样性,我们设计了一种Point Patch Mixing的方法生成更多的训练样本。

MPM方法流程

最后我们将预训练的Transformers在多个下游任务上进行微调(finetune),可以提升该模型在这些任务上的性能表现。

实验结果:

我们在分类问题和分割问题上进行了实验:

  • 对于分类问题,我们将MPM预训练中的MPM head更换为MLP,并进行分类训练。

  • 对于分割问题,我们设计了适合于标准Transformers的segmentation head,主要部分如下图所示,进行组件分割(Part Segmentation)训练。

Segmentation Head的Upsampling与Propagation操作

我们在三维物体分类,少样本学习,迁移学习与组件分割上进行实验,我们主要结果如下:

  1. 在点云物体分类任务上, Point-BERT采用最少的人为先验,超越了目前主流的点云学习模型;

模型在ModelNet40上的实验性能表现

2. Point-BERT学习到的特征可以很好地迁移至新的任务与新的数据域;

少样本学习实验结果

模型在真实数据集ScanObjectNN上的分类准确率

模型在真实数据集ScanObjectNN上的分类准确率

3. 由可视化结果可以看出,Point-BERT即使在点云缺失比例很高的情况下也能准确地预测出缺失部分的点云结构。

Point-BERT经过MPM与训练后的重建结果。通过Transformer进行缺失离散编码预测后,利用预训练的Decoder进行物体补全

结论

Point-BERT设计了一种新的点云Transformers预训练方法,通过构建MPM任务,帮助标准Transformers同时学习低层结构信息与高层语义信息,并为标准Transformers在三维物体相关任务带来了很大的提升。更多细节请参考我们的文章与开源代码。


参考文献

  1. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805, 2018

  2. Hangbo Bao, Li Dong, and FuruWei. Beit: Bert pre-training of image transformers. arXiv:2106.08254, 2021.

  3. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2020

  4. Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point cloud pre-training via occlusion completion. In ICCV, 2021.



ICCV和CVPR 2021论文和代码下载


后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集

后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


CVer-Transformer交流群成立


扫描下方二维码,或者添加微信:CVer6666,即可添加CVer小助手微信,便可申请加入CVer-Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信: CVer6666,进交流群


CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!


扫码进群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

登录查看更多
2

相关内容

【AAAI2022】基于双流更新的视觉Transformer动态加速方法
专知会员服务
24+阅读 · 2021年12月11日
专知会员服务
30+阅读 · 2021年7月30日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
37+阅读 · 2021年4月16日
专知会员服务
65+阅读 · 2021年4月11日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
38+阅读 · 2021年4月9日
专知会员服务
45+阅读 · 2021年1月31日
【EMNLP2020-清华】基于常识知识图谱的多跳推理语言生成
专知会员服务
74+阅读 · 2020年9月25日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
26+阅读 · 2020年7月23日
多项NLP任务新SOTA,Facebook提出预训练模型BART
机器之心
22+阅读 · 2019年11月4日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
20+阅读 · 2021年9月21日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关VIP内容
【AAAI2022】基于双流更新的视觉Transformer动态加速方法
专知会员服务
24+阅读 · 2021年12月11日
专知会员服务
30+阅读 · 2021年7月30日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
37+阅读 · 2021年4月16日
专知会员服务
65+阅读 · 2021年4月11日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
38+阅读 · 2021年4月9日
专知会员服务
45+阅读 · 2021年1月31日
【EMNLP2020-清华】基于常识知识图谱的多跳推理语言生成
专知会员服务
74+阅读 · 2020年9月25日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
26+阅读 · 2020年7月23日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
相关论文
Arxiv
3+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
20+阅读 · 2021年9月21日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
15+阅读 · 2020年2月5日
Top
微信扫码咨询专知VIP会员