在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。
在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。
点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。
@theodoric008 推荐
#Relation Extraction
本文来自苏黎世联邦理工学院 DS3Lab,文章针对实体关系抽取任务进行了非常系统的实验,并在第十二届国际语义评测比赛 SemEval 2018 的语义关系抽取和分类任务上获得冠军。本文思路严谨,值得国内学者们仔细研读。
@yihongchen 推荐
#Dialogue System
本文是 Facebook AI Research 发表于 NIPS 2018 的工作。论文根据一个名为 PERSONA-CHAT 的对话数据集来训练基于 Profile 的聊天机器人,该数据集包含超过 16 万条对话。
本文致力于解决以下问题:
聊天机器人缺乏一致性格特征
聊天机器人缺乏长期记忆
聊天机器人经常给出模糊的回应,例如 I don't know
DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding
@zhkun 推荐
#Natural Language Understanding
本文是悉尼科技大学发表于 AAAI 2018 的工作,这篇文章是对 Self-Attention 的另一种应用,作者提出一种新的方向性的 Attention,从而能更加有效地理解语义。
@chlr1995 推荐
#Object Detection
本文来自清华大学和 Face++,文章分析了使用 ImageNet 预训练网络调优检测器的缺陷,研究通过保持空间分辨率和扩大感受野,提出了一种新的为检测任务设计的骨干网络 DetNet。
实验结果表明,基于低复杂度的 DetNet59 骨干网络,在 MSCOCO 目标检测和实例分割追踪任务上都取得当前最佳的成绩。
@chlr1995 推荐
#Video Caption
本文以《摩登原始人》的动画片段作为训练数据,对每个片段进行详细的文本标注,最终训练得到一个可以通过给定脚本或文字描述生成动画片段的模型。
模型称为 Craft,分为布局、实体、背景,三个部分。虽然现阶段模型存在着很多问题,但是这个研究在理解文本和视频图像高层语义方面有着很大的意义。
@Aidon 推荐
#Image Caption
本文来自华盛顿大学和微软,文章提出一个基于 GAN 的 Image Caption 框架,亮点如下:
1. 提出用 comparative relevance score 来衡量 image-text 的质量从而指导模型的训练,并且在训练过程中引入 unrelated captions;
2. 利用 human evaluations 评估 caption 的 accuracy,给出了和传统的六个评价指标的结果对比;
3. 提出通过比较 caption feature vectors 的 variance 来评估 caption 的 diversity。
@robertdlut 推荐
#Self-Attention
本文是 Andrew McCallum 团队应用 Self-Attention 在生物医学关系抽取任务上的一个工作。这篇论文作者提出了一个文档级别的生物关系抽取模型,作者使用 Google 提出包含 Self-Attention 的 transformer 来对输入文本进行表示学习,和原始的 transformer 略有不同在于他们使用了窗口大小为 5 的 CNN 代替了原始 FNN。
@Ttssxuan 推荐
#Recommender System
本文系统地介绍了 Session-based Recommendation,主要针对 baseline methods, nearest-neighbor techniques, recurrent neural networks 和 (hybrid) factorization-based methods 等 4 大类算法进行介绍。
此外,本文使用 RSC15、TMALL、ZALANDO、RETAILROCKET、8TRACKS 、AOTM、30MUSIC、NOWPLAYING、CLEF 等 7 个数据集进行分析,在 Mean Reciprocal Rank (MRR)、Coverage、Popularity bias、Cold start、Scalability、Precision、Recall 等指标上进行比较。
@chlr1995 推荐
#Neural Network
本文是 ICLR 2018 最佳论文之一。在神经网络优化方法中,有很多类似 Adam、RMSprop 这一类的自适应学习率的方法,但是在实际应用中,虽然这一类方法在初期下降的很快,但是往往存在着最终收敛效果不如 SGD+Momentum 的问题。
作者发现,导致这样问题的其中一个原因是因为使用了指数滑动平均,这使得学习率在某些点会出现激增。在实验中,作者给出了一个简单的凸优化问题,结果显示 Adam 并不能收敛到最优点。
在此基础上,作者提出了一种改进方案,使得 Adam 具有长期记忆能力,来解决这个问题,同时没有增加太多的额外开销。
@jamiechoi 推荐
#Image Captioning
本文是佐治亚理工学院发表于 CVPR 2018 的工作,文章结合了 image captioning 的两种做法:以前基于 template 的生成方法(baby talk)和近年来主流的 encoder-decoder 方法(neural talk)。
论文主要做法其实跟作者以前的工作"Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning"类似:在每一个 timestep,模型决定生成到底是生成 textual word(不包含视觉信息的连接词),还是生成 visual word。其中 visual word 的生成是一个自由的接口,可以与不同的 object detector 对接。
@wanzysky 推荐
#Semantic Segmentation
本文提出了一种与类别预测相关的网络结构,使得在一定程度上降低了分割任务的难度。Channel attention 和空间 attention 形成互补,Global contextual loss 增强 context 信息,同时提高了小物体的分割精度。
@VIPSP 推荐
#Convolutional Neural Network
图卷积神经网络(Graph CNN)是经典 CNN 的推广方法,可用于处理分子数据、点云和社交网络等图数据。Graph CNN 中的的滤波器大多是为固定和共享的图结构而构建的。但是,对于大多数真实数据而言,图结构的大小和连接性都是不同的。
本论文提出了一种有泛化能力且灵活的 Graph CNN,其可以使用任意图结构的数据作为输入。通过这种方式,可以在训练时为每个图数据构建一个任务驱动的自适应图(adaptive graph)。
为了有效地学习这种图,作者提出了一种距离度量学习方法。并且在九个图结构数据集上进行了大量实验,结果表明本文方法在收敛速度和预测准确度方面都有更优的表现。
本文由 AI 学术社区 PaperWeekly 精选推荐,社区目前已覆盖自然语言处理、计算机视觉、人工智能、机器学习、数据挖掘和信息检索等研究方向,点击「阅读原文」即刻加入社区!
点击以下标题查看往期推荐:
#作 者 招 募#
我是彩蛋
解锁新功能:热门职位推荐!
PaperWeekly小程序升级啦
今日arXiv√猜你喜欢√热门职位√
找全职找实习都不是问题
解锁方式
1. 识别下方二维码打开小程序
2. 用PaperWeekly社区账号进行登陆
3. 登陆后即可解锁所有功能
职位发布
请添加小助手微信(pwbot02)进行咨询
长按识别二维码,使用小程序
*点击阅读原文即可注册
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。
▽ 点击 | 阅读原文 | 加入社区刷论文