【KDD2020】多源深度域自适应的时序传感数据

2020 年 5 月 25 日 专知

领域适应(DA)提供了重用数据和模型用于新问题领域的有价值的方法。然而,对于具有不同数据可用性的时间序列数据,还没有考虑到健壮的技术。在本文中,我们做出了三个主要贡献来填补这一空白。我们提出了一种新的时间序列数据卷积深度域自适应模型(CoDATS),该模型在现实传感器数据基准上显著提高了最先进的DA策略的准确性和训练时间。通过利用来自多个源域的数据,我们增加了CoDATS的有用性,从而进一步提高了与以前的单源方法相比的准确性,特别是在域之间具有高度可变性的复杂时间序列数据集上。其次,我们提出了一种新的弱监督域自适应(DA-WS)方法,利用目标域标签分布形式的弱监督,这可能比其他数据标签更容易收集。第三,我们对不同的真实数据集进行了综合实验,以评估我们的域适应和弱监督方法的有效性。结果表明,用于单源DA的CoDATS比最先进的方法有了显著的改进,并且我们使用来自多个源域和弱监督信号的数据实现了额外的准确性改进。

https://github.com/floft/codats


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DATS” 可以获取《多源深度域自适应的时序传感数据》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
298+阅读 · 2020年6月16日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
25+阅读 · 2020年5月25日
【伯克利-滴滴出行】深度学习多源领域自适应综述论文
专知会员服务
53+阅读 · 2020年2月28日
零样本图像识别综述论文
专知
21+阅读 · 2020年4月4日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
7+阅读 · 2020年3月1日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
Top
微信扫码咨询专知VIP会员