AI界的七大未解之谜:OpenAI丢出一组AI研究课题

2018 年 2 月 5 日 数盟

今天,OpenAI在官方博客上丢出了7个研究过程中发现的未解决问题。

OpenAI希望这些问题能够成为新手入坑AI的一种有趣而有意义的方式,也帮助从业者提升技能。

OpenAI版AI界七大未解之谜,现在正式揭晓——

1. Slitherin’

难度指数:☆☆

实现并解决贪吃蛇的多玩家版克隆作为Gym环境。

环境:场地很大,里面有多条蛇,蛇通过吃随机出现的水果生长,一条蛇在与另一条蛇、自己或墙壁相撞时即死亡,当所有的蛇都死了,游戏结束。

智能体:使用自己选择的自我对弈的RL算法解决环境问题。你需要尝试各种方法克服自我对弈的不稳定性。

检查学习行为:智能体是否学会了适时捕捉食物并避开其他蛇类?是否学会了攻击、陷害、或者联合起来对付竞争对手?

2. 分布式强化学习中的参数平均

难度指数:☆☆☆

这指的是探究参数平均方案对RL算法中样本复杂度和通信量影响。一种简单的解决方法是平均每个更新的每个worker的梯度,但也可以通过独立地更新worker、减少平均参数节省通信带宽。

这样做还有一个好处:在任何给定的时间内,我们都有不同参数的智能体,可能出现更好的探测行为。另一种可能是使用EASGD这样的算法,它可以在每次更新时将参数部分结合在一起。

3. 通过生成模型完成的不同游戏中的迁移学习

难度指数:☆☆☆

这个流程如下:

训练11个Atari游戏的策略。从每个游戏的策略中,生成1万个轨迹,每个轨迹包含1000步行动。

将一个生成模型(如论文Attention Is All You Need提出的Transformer)与10个游戏产生的轨迹相匹配。

然后,在第11场比赛中微调上述模型。

你的目标是量化10场比赛预训练时的好处。这个模型需要什么程度的训练才能发挥作用?当第11个游戏的数据量减少10x时,效果的大小如何变化?如果缩小100x呢?

4. 线性注意Transformer

难度指数:☆☆☆

Transformer模型使用的是softmax中的软注意力(soft attention)。如果可以使用线性注意力(linear attention),我们就能将得到的模型用于强化学习。

具体来说,在复杂环境下使用Transformer部署RL不切实际,但运行一个具有快速权重(fast weight)的RNN可行。

你的目标是接受任何语言建模任务,训练Transformer,然后找到一种在不增加参数总数情况下,用具有不同超参数的线性注意Transformer获取每个字符/字的相同位元的方法。

先给你泼盆冷水:这可能是无法实现的。再给你一个潜在的有用提示,与使用softmax注意力相比,线性注意转化器很可能需要更高的维度key/value向量,这能在不显著增加参数数量的情况下完成。

5. 已学习数据的扩充

难度指数:☆☆☆

可以用学习过的数据VAE执行“已学习数据的扩充”。

我们首先可能需要在输入数据上训练一个VAE,然后将每个训练点编码到一个潜在的空间,之后在其中应用一个简单(如高斯)扰动,最后解码回到观察的空间。用这种方法是否能得到更好的泛化,目前还是一个谜题。

这种数据扩充的一个潜在优势是,它可能包含视角变换、场景光纤变化等很多非线性转换。

6. 强化学习中的正则化

难度指数:☆☆☆☆

这指的是实验性研究和定性解释不同正则化方法对RL算法的影响。

在监督学习中,正则化对于优化模型和防止过拟合具有极其重要的意义,其中包含一些效果很赞的方法,如dropout、批标准化和L2正则化等。

然而,在策略梯度和Q-learning等强化学习算法上,研究人员还没有找到合适的正则化方法。顺便说一下,人们在RL中使用的模型要比在监督学习中使用的模型小得多,因为大模型表现更差。

7. Olympiad Inequality问题的自动解决方案

难度指数:☆☆☆☆☆

Olympiad Inequality问题很容易表达,但解决这个问题往往需要巧妙的手法。

建立一个关于Olympiad Inequality问题的数据集,编写一个可以解决大部分问题的程序。目前还不清楚机器学习在这里是否有用,但你可以用一个学习的策略减少分支因素。

媒体合作请联系:

邮箱:contact@dataunion.org




登录查看更多
0

相关内容

OpenAI,由诸多硅谷大亨联合建立的人工智能非营利组织。2015年马斯克与其他硅谷科技大亨进行连续对话后,决定共同创建OpenAI,希望能够预防人工智能的灾难性影响,推动人工智能发挥积极作用。特斯拉电动汽车公司与美国太空技术探索公司SpaceX创始人马斯克、Y Combinator总裁阿尔特曼、天使投资人彼得·泰尔(Peter Thiel)以及其他硅谷巨头去年12月份承诺向OpenAI注资10亿美元。
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
专知会员服务
199+阅读 · 2020年3月6日
BERT进展2019四篇必读论文
专知会员服务
67+阅读 · 2020年1月2日
机器推理系列文章概览:七大NLP任务最新方法与进展
微软研究院AI头条
9+阅读 · 2019年9月11日
NLP领域中的迁移学习现状
AI科技评论
7+阅读 · 2019年9月1日
自然语言生成的演变史
专知
25+阅读 · 2019年3月23日
可应用于实际的14个NLP突破性研究成果(一)
云栖社区
7+阅读 · 2019年2月18日
2018 年 Top 10 影响力 AI 研究论文
AI科技评论
41+阅读 · 2019年1月6日
详细解读谷歌新模型 BERT 为什么嗨翻 AI 圈
人工智能头条
10+阅读 · 2018年10月25日
OpenAI NLP最新进展:通过无监督学习提升语言理解
人工智能头条
6+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2019年10月31日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
机器推理系列文章概览:七大NLP任务最新方法与进展
微软研究院AI头条
9+阅读 · 2019年9月11日
NLP领域中的迁移学习现状
AI科技评论
7+阅读 · 2019年9月1日
自然语言生成的演变史
专知
25+阅读 · 2019年3月23日
可应用于实际的14个NLP突破性研究成果(一)
云栖社区
7+阅读 · 2019年2月18日
2018 年 Top 10 影响力 AI 研究论文
AI科技评论
41+阅读 · 2019年1月6日
详细解读谷歌新模型 BERT 为什么嗨翻 AI 圈
人工智能头条
10+阅读 · 2018年10月25日
OpenAI NLP最新进展:通过无监督学习提升语言理解
人工智能头条
6+阅读 · 2018年6月18日
相关论文
Arxiv
3+阅读 · 2019年10月31日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Arxiv
4+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员