五个给机器学习和数据科学入门者的学习建议

2019 年 9 月 16 日 机器之心

选自towardsdatascience

作者:Daniel Bourke

机器之心编译

参与:韩放、一鸣

都说做一件事情最好的时机就是「现在」,但是从何开始往往会难倒一大批人,更不用说是想要入门数据科学和机器学习的朋友了。 本文是一篇科普扫盲文章,作者以初学者的视角,为同样想「入坑」的读者们提供了一些建议,还有一些可以获得的学习资源。


「我想学习机器学习和人工智能,该从哪开始呢?


从这里开始。




两年前,我开始在网上自学机器学习,并且通过 YouTube 和博客分享了我的学习过程。 我并不知道我在做什么,在决定开始学习机器学习之前我从没写过代码。

当人们发现我的作品,他们通常会私信并提问。 我不一定知道所有的答案,但我会尽量回复。 人们最常问的问题是: 「该从哪开始? 」,其次是: 「我需要多少数学基础?
今天早上我就回答了一堆这样的问题。

有人告诉我他已经开始学习 Python 并打算学习机器学习了,但不知道下一步该做什么。


「我已经学习了 Python,下一步该做什么?

我回复了一系列学习的步骤,并且复制到了这里。 如果你想成为一个机器学习从业者,却不知道怎么写代码的话,可以把本文当作一个大纲。 我的学习风格是代码优先: 先把代码运行起来,再根据需要学习理论、数学、统计以及概率等方面的东西,而不是一开始就学理论。

记住,开始学习机器学习你会面临很多阻碍。 别急,慢慢来。 把这篇文章添加到收藏夹,以便随时参考。

我倾向于使用 Python,因为我是从 Python 开始的,并且一直在持续使用它。 你也可以用其他语言,但本文的所有步骤都是基于 Python 的。


学习 Python、数据科学工具和机器学习概念


问我问题的那些邮件作者们说他们已经学了一些 Python。 但这一步也同样适用于新手。 花几个月的时间学习 Python 编程和不同的机器学习概念。 这两部分知识你都会需要。


在学习 Python 编程的同时,练习使用 Jupyter 和 Anaconda 等数据科学工具。 花几个小时来研究一下,它们是用来做什么的以及为什么要使用它们。


学习资源


  1. 人工智能要素 (https://www.elementsofai.com/)—人工智能和机器学习主要概念概述。

  2. Coursera 上的 Python 教程—(https://bit.ly/pythoneverybodycoursera) 从头学习 Python。

  3. 通过 freeCodeCamp 学习 Python (https://youtu.be/rfscVS0vtbw)—一个视频涵盖了 Python 所有主要概念。

  4. Corey Schafer 的 Anaconda 教程 (https://youtu.be/YJC6ldI3hWk)—一个视频学会 Anaconda(数据科学和机器学习需要的配置环境)。

  5. Dataquest 的新手 Jupyter Notebook 教程 (https://www.dataquest.io/blog/jupyter-notebook-tutorial/)—一篇文章学会启动和运行 Jupyter Notebook。

  6. Corey Schafer 的 Jupyter Note 教程 (https://www.youtube.com/watch?v=HW29067qVWk)—一个视频学会使用 Jupyter Notebook。


学习通过 Pandas、Numpy 和 Matplotlib 进行数据分析、操作和可视化


一旦你已经掌握了一些 Python 技巧,就会开始想要学习如何处理和操作数据,为了实现这一目的,你需要熟悉 Pandas、Numpy 和 Matplotlib。


  • Pandas 可以帮助你处理二维数据,类似 Excel 文件里的信息表,包含行和列。这类数据被称为结构化数据。

  • Numpy 可以帮助你进行数值计算。机器学习把你能想到的所有东西都转化成数字,进而在这些数字中寻找模式。

  • Matplotlib 可以帮助你绘制图形和可视化数据。理解表格中的一堆数字对人类来说可能很困难。我们更喜欢看到有一条线穿过的图。可视化可以更好得传达你的发现。


学习资源


  1. Cousera 上的 Python 应用数据科学 (http://bit.ly/courseraDS)—开始打磨数据科学方向的 Python 技能。

  2. 10 分钟入门 pandas (https://pandas.pydata.org/pandas-docs/stable/gettingstarted/10min.html)—快速概览 pandas 库及其部分最有用的函数。

  3. Codebasics 的 Python pandas 教程 (https://youtu.be/CmorAWRsCAw)—该 YouTube 系列介绍了 pandas 的所有主要功能。

  4. freeCodeCamp 的 NumPy 教程 (https://youtu.be/QUT1VHiLmmI)—一个 YouTube 视频学会 NumPy。

  5. Sentdex 的 Matplotlib 教程 (https://www.youtube.com/watch?v=q7Bo_J8x_dw&list=PLQVvvaa0QuDfefDfXb9Yf0la1fPDKluPF)—YouTube 系列助你学会 Matplotlib 所有最有用的功能。


借助 scikit-learn 学习机器学习

现在你已经掌握了操作和可视化数据的技能,是时候学习在数据中寻找模式了。 scikit-learn 是一个 Python 库,它内置了许多有用的机器学习算法供你使用,它还提供了许多其他有用的函数来探究学习算法的学习效果。


重点在于学习都有什么样的机器学习问题,比如分类和回归,什么样的算法最适合解决这些问题。 现在还不需要从头开始理解每个算法,先学习如何应用它们。


学习资源


  1. Data School 的基于 scikit-learn 的 Python 机器学习 (https://www.youtube.com/watch?v=elojMnjn4kk&list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A)—一个 YouTube 播放列表教你 scikit-learn 的所有主要函数。

  2. Daniel Bourke 对探索性数据分析的简要介绍 (https://towardsdatascience.com/a-gentle-introduction-to-exploratory-data-analysis-f11d843b8184)—把你在上述两个步骤中学到的知识融合在一个项目中。提供代码和视频,助你开始第一个 Kaggle 竞赛。

  3. Daniel Formosso 的基于 scikit-learn 的探索性数据分析笔记 (https://github.com/dformoso/sklearn-classification)—以上资源的更深入版本,附带了一个实践上述内容的端到端项目。


学习深度学习神经网络


深度学习和神经网络在没有太多结构的数据上最有效。 二维数据虽然有结构,图像、视频、音频文件和自然语言文本也有,但不会太多。


小贴士 在大多数情况下,你会想对结构化数据使用一组决策树(随机森林或 XGBoost 之类的算法),而对于非结构化数据,你会想使用深度学习或迁移学习(使用预先训练的神经网络并将其用于你的问题)。


你可以开始把这样的小贴士用一张便条记录,然后边学习边收集这些信息。


学习资源


  1. Cousera 上 Andrew Ng 的 deeplearning.ai (https://bit.ly/courseradl) (https://bit.ly/courseradl)—商业上最成功的从业者之一讲授的深度学习课程。

  2. Jeremy Howard 的 fast.ai 深度学习课程 (https://course.fast.ai/) (https://bit.ly/courseradl)—工业界最好的实践者之一讲授的深度学习实际操作方法。


其他课程和书籍

在学习过程中,最理想的情况是你可以用自己的小项目来练习所学的东西。 这不必是复杂的,需要改变世界的事情,但你可以说「我用 X 做了这个」。 然后通过 github 或博客分享你的工作。 github 用于展示你的代码,博客文章用于展示你如何表达自己所做的工作。 你应该为每个项目都发布一下这些内容。 申请一份工作的最好方法是你已经做完了工作要求做的事情。 分享你的工作是向未来的潜在雇主展示你能力的好方法。


在你熟悉了如何使用不同的机器学习和深度学习框架之后,你可以尝试通过从头开始构建它们来巩固你的知识。 你不必总是在生产或从事机器学习时这样做,但是从内部了解事情是如何工作的将有助于你建立自己的工作。


学习资源


  1. Daniel Bourke 的如何开始你自己的机器学习工程 (https://towardsdatascience.com/how-to-start-your-own-machine-learning-projects-4872a41e4e9c)—开始你自己的工程可能会很难,这篇文章可以给你一些指引。

  2. Jeremy Howard 的 fast.ai 深度学习基础 (https://course.fast.ai/part2)—自上而下学习后,本课程将帮助你从下往上填补空白。

  3. Andrew Trask 的 Grokking Deep Learning (https://amzn.to/2H497My)—这本书将教你如何从头开始构建神经网络,以及为什么你应该知道如何构建。

  4. Daniel Bourke 推荐的机器学习书籍 (https://www.youtube.com/watch?v=7R08MPXxiFQ)—该 YouTube 视频整理了一些机器学习最佳书籍。


答疑


每一步需要多长时间?


你可能会花 6 个月或更长的时间。 别着急,学习新事物需要时间。 作为一名数据科学家或机器学习工程师,你正在培养的主要技能是如何针对数据提出好的问题,然后使用你的工具来尝试寻找答案。


有时候你会觉得自己什么都没学到。 甚至倒退。 忽略它。 不要以天为单位来衡量,看看你一年后有什么样的进步。


我在哪里可以学到这些技能?


我在上面列出了一些资源,它们都是在线的,而且大部分都是免费的,类似的资源还有很多。

DataCamp (http://bit.ly/datacampmrdbourke) 是一个很好学习网站。 另外,我的 Machine Learning and Artificial Intelligence resources database (https://bit.ly/AIMLresources) 整理了免费和付费的学习资料。

记住,作为数据科学家或机器学习工程师,很大一部分工作是要解决问题。 通过你的第一个作业探索这里的每一个步骤,并创建你自己的课程来帮助学习。

如果你想知道一个自我引导的机器学习课程的例子是什么样子的,看看我的 Self-Created AI Masters Degree (https://bit.ly/aimastersdegree)。 这是我在过去 9 个月内从零编码变成机器学习工程师的过程。 它不是完美的,但是我的真实经历,因此你可以试试。


统计怎么办? 数学怎么办? 概率呢?


实践过程中你会学到这些东西的。 先从代码开始。 把代码运行起来。 在运行代码之前,尝试学习所有的统计、数学、概率知识,就像是在试图煮沸大海。 它会让你退缩。
如果代码不运行,统计、数学和概率都不重要。 先运行起来,然后用你的研究技巧来验证它是否正确。


证书?


证书很好,但你不是为了证书而学习,而是为了提高技能。 不要和我犯同样的错误,不要认为证书越多代表技能越多,并不是这样的。 通过上述课程和资源建立知识基础,然后通过自己的项目完善专业知识(这些是课程无法传授的知识)。

参考链接:https://towardsdatascience.com/5-beginner-friendly-steps-to-learn-machine-learning-and-data-science-with-python-bf69e211ade5

文为机器之心编译,转载请联系本公众号获得授权
✄------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com


登录查看更多
3

相关内容

Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示的程序。如在编程过程中需要编写说明文档,可在同一个页面中直接编写,便于作及时的说明和解释。
专知会员服务
171+阅读 · 2020年6月4日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
七本书籍带你打下机器学习和数据科学的数学基础
已删除
将门创投
3+阅读 · 2018年4月10日
从0到1 | 0基础/转行 如何用3个月学会机器学习|数据科学
数据挖掘入门与实战
5+阅读 · 2017年12月4日
机器学习小白如何成长为业内专家?
深度学习世界
4+阅读 · 2017年12月4日
机器学习实践指南
Linux中国
8+阅读 · 2017年9月28日
干货|7步让你从零开始掌握Python机器学习!
全球人工智能
8+阅读 · 2017年9月24日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关VIP内容
专知会员服务
171+阅读 · 2020年6月4日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
七本书籍带你打下机器学习和数据科学的数学基础
已删除
将门创投
3+阅读 · 2018年4月10日
从0到1 | 0基础/转行 如何用3个月学会机器学习|数据科学
数据挖掘入门与实战
5+阅读 · 2017年12月4日
机器学习小白如何成长为业内专家?
深度学习世界
4+阅读 · 2017年12月4日
机器学习实践指南
Linux中国
8+阅读 · 2017年9月28日
干货|7步让你从零开始掌握Python机器学习!
全球人工智能
8+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员