五个方法,破解数据分析的核心难题

2022 年 8 月 13 日 人人都是产品经理

关注并将「人人都是产品经理」设为星标

每天早 07 : 45 按时送达

在数据分析中,我们的数据分析有无意义取决于所定标准,若标准不一,评判的结果也就不一致。那么,数据分析的标准该如何去定,破解数据分析核心难题。作者总结了五个方法,希望对你有所帮助。

全文共 2528 字,阅读需要 5 分钟

——————/ BEGIN /——————

数据分析的一个基本常识:数据本身没有意义,数据+标准才有含义。然而恰恰是标准二字,弄死了无数数据分析师。

常见的问题,诸如:

  • 没标准:业务说“我的活动提升了业绩, 计划提升多少我也不知道,你分析分析?”然后不管数据提什么,业务说“太少了吧,你没考虑周全”。

  • 标准不确定:业务要提升“顾客健康度”“渠道质量”,然后不管数据分析师用什么指标,业务都说“你这几个指标就能代表健康了?那另外一个指标就不健康?”

  • 标准反复横跳:指标下跌了0.1%,业务紧张得要死,非要深入分析;指标下跌30%,业务说“这是正常的,你分析个屁!”。

找标准,是数据分析核心难题。标准不确定,数据反映出的是不是问题?是多大的问题?是谁的问题?都不能确定,那还咋深入分析呀。那到底标准怎么定?今天系统讲一下。

为什么定标准那么难

从本质上看,标准难定,主要是来自业务本身考核难度不同:

  • 有的业务是搬砖式的,做一件东西就是一件东西,这种最容易定标准,计件工资即可。

  • 有的业务是BUFF式的,提高了做东西效率。这种标准就不容易定,因为很难剥离出“没有buff是多少”,无数的争论都是从这里来的。

  • 有的业务是锦上添花的,就像菜市场小贩吆喝“我家番茄又大又红咯”。这种不做不会死,做了看似更好,但很又很难考证效果。

更糟糕的是:有的数据分析师,不清楚以上区别,以为可以一锅炖。

更更糟糕的是:有的业务,很清楚以上区别,所以在自己做得不好的时候,故意浑水摸鱼,企图模糊标准,为自己文过饰非。

当一个不懂区分的数据分析师,遭遇一个企图蒙混过关的业务,就是标准的盲人骑瞎马了。这才会出现开头的种种吐槽。更搞笑的是,这时候懵懂懂的数据分析师还没发现问题,还会在网上到处问:“哪里有中国互联网数据分析统一标准定义?”

所以破局的思路,就是不能指望业务部门良心发现,而是数据分析师自己练就火眼金睛。辨明是非,分类型看标准如何定。

第一类:赚钱的搬砖

比如互联网行业的推广、投放,传统企业的销售、门店。这种是可以考核到人的,每个人为公司贡献多少收入、贡献多少新用户一目了然。这类工作事关公司收入和业务增长,因此一般都有硬考核指标,且一般都是老板强硬压下来的。

这种情况下,记得三不扯原则n不扯“自然增长率”。该做多少做多少,不服气去跟老板吵:

  • 不扯“合理不合理”。老板定了多少就是多少,不服气去跟老板吵*2

  • 不扯“其他深远效果”。老板没有定的不理会,不服气去跟老板吵*3

数据分析师要做的,就是把老板的目标,按业务线/按时间拆解出来。把年度目标,分解到每一个时间段,然后跟踪完成即可(如下图)。

第二类:供应的搬砖

比如商品备货、供应。

这一类工作要根据销售情况做准备,但又不能完全照搬销售指标,因为销售指标有可能无法达成/超期达成。而一旦目标无法达成,备货太多,就会积压,导致损失。超期达成,备货不足,会失去一些销售机会。因此定目标,经常是双重考核:供应充足率/库存损失率。

第三类:普众式buff

普众式BUFF,即常见的各种大促销、新人礼包、满500减100、买三件送一件、消费10000成为白金卡会员等,一般是运营、营销、增长部门搞的。这种活动参与规则与参与人群是公开透明的,用户达标即可领奖。

普众式BUFF都有明确的目标,比如商品运营,不同阶段目标/手法不一样(如下图)。

比如用户运营,不同阶段目标/手法也不一样(如下图)。

注意!加BUFF的部门,最喜欢扯“自然增长”,扯“深远影响”,扯“额外增收”。因为这些BUFF是叠加在其他人工作之上的,所以搞活动的部门,生怕不能体现自己的功劳,恨不得把自然增长率搞成负的,把所有增长归功于自己。也因此搞出很多争吵。

解决争吵的办法,是把“深层次效果分析”与“目标考核”区分开。先达成自身的目标,再复盘达成目标以后的效果。连目标都没达到,整体业绩还在下滑,商品还在滞销,用户发展不来,有啥“其他深远影响”好扯的,都是自欺欺人。

第四类:精准式buff

精准式buff,最常见的形式就是精准营销。通过电话、短信、APP内推送等形式,给不同用户不同营销方案,且其他用户不知情,无法参与。

注意:精准营销是可以通过封闭信息的方式,设活动组与参照组,相对准确的衡量自然增长率的。因此精准式BUFF可以直接把目标设为:较自然增长,额外提升转化/消费效果XXX。

怕就怕,做的活动是精准式活动,但是没有做分组,没有设参照组,也没有事前ABtest。啥准备都没有,事后跑来问:如何精确衡量?肯定回答不了。

第五类:锦上添花

所有内部数据记录不到的任务,都是锦上添花类任务。常见的比如品牌、传播、服务,对应的指标是用户知名度、用户满意度、用户忠诚度。

这些数据来源要么靠市场调查、要么靠外平台的数据记录,比如公众号文章阅读量、视频播放量等等。

这种标准的最大问题,来自于:数据易操控。市场调查问卷质量太差,样本太少;外平台的数据可以靠人工刷量轻松做出来。所以树这一类标准,有个最简单的办法:让负责部门自己事前提个数,然后看他们能不能达成。

至于这种锦上添花能不能带来销售、用户,等实际效果。作为数据分析只认链接。有转化链接,有内部数据记录,就转化为普众buff式工作,考核转化效率。没有链接,没有转化路径,没有内部数据,一概不认,断了他们浑水摸鱼的念想。

小  结

从本质上看,标准问题牵扯绩效考核,因此业务方才有浑水摸鱼的动力。

这是个披着数据问题的办公室政治问题。

因此,想破题,一定不能把解题思路引到“有一个完美的数学算法”上面。任何数学算法都解决不了人心贪婪的问题。

所以数据能做的,就是落实可考核的部分,帮助大家回归初心,减少胡搅蛮缠,从而更好实现整体目标。毕竟蛋糕做不大,怎么分还是饿。

——————/ E N D /——————

产品经理培训产品运营培训企业内训服务

请在公众号后台回复「培训」了解更多

▼ 喜欢请分享&收藏,满意点个赞,最后点「在看」 ▼

登录查看更多
0

相关内容

数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。
【2022新书】生命科学的数据分析,511页pdf
专知会员服务
70+阅读 · 2022年11月15日
实时数仓赋能金融业务的落地实践
专知会员服务
20+阅读 · 2022年7月24日
企业数据治理痛点与阿里巴巴数据治理方案
专知会员服务
44+阅读 · 2022年7月4日
专知会员服务
117+阅读 · 2021年10月17日
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
专知会员服务
50+阅读 · 2021年5月21日
【2020新书】操作反模式: DevOps解决方案, 322页pdf
专知会员服务
31+阅读 · 2020年11月8日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
194+阅读 · 2020年6月29日
提问:如何分析一个复杂的数据问题?
人人都是产品经理
1+阅读 · 2022年10月18日
你和数据分析高手之间,只差一个标签
人人都是产品经理
0+阅读 · 2022年8月18日
四步走,做有深度的数据分析
人人都是产品经理
0+阅读 · 2022年7月27日
抽丝剥茧,深入的数据分析这么做!
人人都是产品经理
0+阅读 · 2022年7月23日
总做描述性统计,深入的数据分析到底怎么做?
人人都是产品经理
0+阅读 · 2022年7月14日
To B和To C业务,数据分析怎么做?
人人都是产品经理
0+阅读 · 2022年4月14日
你写的数据分析报告没人看,为啥?!
人人都是产品经理
0+阅读 · 2022年2月13日
5个步骤,用数据分析优化业务
人人都是产品经理
0+阅读 · 2021年12月27日
运营数据分析,怎么做才有深度
人人都是产品经理
0+阅读 · 2021年11月23日
大数据分析,到底在分析什么?
人人都是产品经理
4+阅读 · 2021年11月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月5日
Arxiv
35+阅读 · 2021年8月2日
VIP会员
相关VIP内容
【2022新书】生命科学的数据分析,511页pdf
专知会员服务
70+阅读 · 2022年11月15日
实时数仓赋能金融业务的落地实践
专知会员服务
20+阅读 · 2022年7月24日
企业数据治理痛点与阿里巴巴数据治理方案
专知会员服务
44+阅读 · 2022年7月4日
专知会员服务
117+阅读 · 2021年10月17日
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
专知会员服务
50+阅读 · 2021年5月21日
【2020新书】操作反模式: DevOps解决方案, 322页pdf
专知会员服务
31+阅读 · 2020年11月8日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
194+阅读 · 2020年6月29日
相关资讯
提问:如何分析一个复杂的数据问题?
人人都是产品经理
1+阅读 · 2022年10月18日
你和数据分析高手之间,只差一个标签
人人都是产品经理
0+阅读 · 2022年8月18日
四步走,做有深度的数据分析
人人都是产品经理
0+阅读 · 2022年7月27日
抽丝剥茧,深入的数据分析这么做!
人人都是产品经理
0+阅读 · 2022年7月23日
总做描述性统计,深入的数据分析到底怎么做?
人人都是产品经理
0+阅读 · 2022年7月14日
To B和To C业务,数据分析怎么做?
人人都是产品经理
0+阅读 · 2022年4月14日
你写的数据分析报告没人看,为啥?!
人人都是产品经理
0+阅读 · 2022年2月13日
5个步骤,用数据分析优化业务
人人都是产品经理
0+阅读 · 2021年12月27日
运营数据分析,怎么做才有深度
人人都是产品经理
0+阅读 · 2021年11月23日
大数据分析,到底在分析什么?
人人都是产品经理
4+阅读 · 2021年11月18日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员