何恺明编年史

2022 年 1 月 9 日 CVer

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

转载自:Smarter

荣誉

别人的荣誉都是在某某大厂工作,拿过什么大奖,而何恺明的荣誉是best,best,best ......,裂开了

研究兴趣

据我观察,何恺明的研究兴趣大致分成这么几个阶段:

传统视觉时代:Haze Removal(3篇)、Image Completion(2篇)、Image Warping(3篇)、Binary Encoding(6篇)

深度学习时代:Neural Architecture(11篇)、Object Detection(7篇)、Semantic Segmentation(11篇)、Video Understanding(4篇)、Self-Supervised(8篇)

代表作

2009 CVPR best paper Single Image Haze Removal Using Dark Channel Prior

利用实验观察到的暗通道先验,巧妙的构造了图像去雾算法。现在主流的图像去雾算法还是在Dark Channel Prior的基础上做的改进。

2016 CVPR best paper Deep Residual Learning for Image Recognition

通过残差连接,可以训练非常深的卷积神经网络。不管是之前的CNN,还是最近的ViT、MLP-Mixer架构,仍然摆脱不了残差连接的影响。

2017 ICCV best paper Mask R-CNN

在Faster R-CNN的基础上,增加一个实例分割分支,并且将RoI Pooling替换成了RoI Align,使得实例分割精度大幅度提升。虽然最新的实例分割算法层出不穷,但是精度上依然难以超越Mask R-CNN。

2017 ICCV best student paper Focal Loss for Dense Object Detection

构建了一个One-Stage检测器RetinaNet,同时提出Focal Loss来处理One-Stage的类别不均衡问题,在目标检测任务上首次One-Stage检测器的速度和精度都优于Two-Stage检测器。近些年的One-Stage检测器(如FCOS、ATSS),仍然以RetinaNet为基础进行改进。

2020 CVPR Best Paper Nominee Momentum Contrast for Unsupervised Visual Representation Learning

19年末,NLP领域的Transformer进一步应用于Unsupervised representation learning,产生后来影响深远的BERT和GPT系列模型,反观CV领域,ImageNet刷到饱和,似乎遇到了怎么也跨不过的屏障。就在CV领域停滞不前的时候,Kaiming He带着MoCo横空出世,横扫了包括PASCAL VOC和COCO在内的7大数据集,至此,CV拉开了Self-Supervised研究新篇章。

近期工作

62-Exploring Simple Siamese Representation Learning

SimSiam:孪生网络表征学习的顶级理论解释

65-Masked Autoencoders Are Scalable Vision Learners

NLP和CV的双子星,注入Mask的预训练模型BERT和MAE

时间线

1-Single Image Haze Removal Using Dark Channel Prior

kaiming he通过大量无雾图片统计发现了dark channel prior—在无雾图的局部区域中,3个通道的最小亮度值非常小接近于0(不包括天空区域)。

dark channel prior通过暗通道先验对haze imaging model进行化简,近似计算得到粗糙的transmission,然后将haze imaging model和matting model联系起来,巧妙的将图像去雾问题转化为抠图问题,得到refined transmission,精彩!

何恺明经典之作—2009 CVPR Best Paper | Dark Channel Prior

3-Guided Image Filtering

Guided image filtering是结合两幅图片信息的过程,一个filtering input image(表示为p)和一个guide image(表示为I)生成一个filtering output image(表示为q)。p决定了q的颜色,亮度,和色调,I决定了q的边缘。对于图像去雾来说,transmission就是p,雾图就是I,refined transmission就是q。

guided filter则通过公式转换,和滤波联系起来,提出新颖的guided filter,巧妙的避开了linear system的计算过程,极大加快了transmission优化的速度。

何恺明经典之作—2009 CVPR Best Paper | Dark Channel Prior

37-Focal Loss for Dense Object Detection

构建了一个One-Stage检测器RetinaNet,同时提出Focal Loss来处理One-Stage的类别不均衡问题,在目标检测任务上首次One-Stage检测器的速度和精度都优于Two-Stage检测器。近些年的One-Stage检测器(如FCOS、ATSS),仍然以RetinaNet为基础进行改进。

Soft Sampling:探索更有效的采样策略

38-Mask R-CNN

在Faster R-CNN的基础上,增加一个实例分割分支,并且将RoI Pooling替换成了RoI Align,使得实例分割精度大幅度提升。虽然最新的实例分割算法层出不穷,但是精度上依然难以超越Mask R-CNN。

从R-CNN到Mask R-CNN的思维跃迁

62-Exploring Simple Siamese Representation Learning

SimSiam的理论解释意味着带stop-gradient的孪生网络表征学习都可以用EM算法解释。stop-gradient起到至关重要的作用,并且需要一个预测期望E的方法进行辅助使用。但是SimSiam仍然无法解释模型坍塌现象,SimSiam以及它的变体不坍塌现象仍然是一个经验性的观察,模型坍塌仍然需要后续的工作进一步讨论。

Self-Supervised: 如何避免退化解

SimSiam:孪生网络表征学习的顶级理论解释

63-A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

指出时空的Self-Supervised采样同一个视频的positive pair时间跨度越长效果越好,momentum encoder比优化目标重要,训练时间、backbone、数据增强和精选数据对于得到更好性能至关重要。

何恺明+Ross Girshick:深入探究无监督时空表征学习

64-An Empirical Study of Training Self-Supervised Vision Transformers

MoCov1通过dictionary as a queue和momentum encoder和shuffle BN三个巧妙设计,使得能够不断增加K的数量,将Self-Supervised的威力发挥的淋漓尽致。MoCov2在MoCov1的基础上,增加了SimCLR实验成功的tricks,然后反超SimCLR重新成为当时的SOTA,FAIR和Google Research争锋相对之作,颇有华山论剑的意思。MoCov3通过实验探究洞察到了Self-Supervised+Transformer存在的问题,并且使用简单的方法缓解了这个问题,这给以后的研究者探索Self-Supervised+Transformer提供了很好的启示。

MoCo三部曲

65-Masked Autoencoders Are Scalable Vision Learners

MAE设计了一个encoder-decoder预训练框架,encoder只送入image token,decoder同时送入image token和mask token,对patch序列进行重建,最后还原成图片。相比于BEiT,省去了繁琐的训练tokenizer的过程,同时对image token和mask token进行解耦,特征提取和图像重建进行解耦,encoder只负责image token的特征提取,decoder专注于图像重建,这种设计直接导致了训练速度大幅度提升,同时提升精度,真称得上MAE文章中所说的win-win scenario了。

NLP和CV的双子星,注入Mask的预训练模型BERT和MAE

kaiming科研嗅觉顶级,每次都能精准的踩在最关键的问题上,提出的方法简洁明了,同时又蕴含着深刻的思考,文章赏心悦目,实验详尽扎实,工作质量说明一切。


ICCV和CVPR 2021论文和代码下载


后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集

后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


CVer-Transformer交流群成立


扫码添加CVer助手,可申请加入CVer-Transformer 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。


一定要备注:研究方向+地点+学校/公司+昵称(如Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲长按加小助手微信,进交流群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看
登录查看更多
0

相关内容

何恺明,本科就读于清华大学,博士毕业于香港中文大学多媒体实验室。 2011年加入微软亚洲研究院(MSRA)工作,主要研究计算机视觉和深度学习。2016年,加入Facebook AI Research(FAIR)担任研究科学家
专知会员服务
16+阅读 · 2021年5月23日
专知会员服务
38+阅读 · 2021年5月16日
专知会员服务
17+阅读 · 2021年4月24日
专知会员服务
29+阅读 · 2021年4月5日
爆肝何恺明的视觉预训练新范式MAE!
CVer
2+阅读 · 2022年1月12日
大道至简 | 何恺明让计算机视觉通向大模型!
机器学习与推荐算法
2+阅读 · 2021年11月15日
从R-CNN到Mask R-CNN!
全球人工智能
17+阅读 · 2017年11月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2021年11月11日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员