论文简介:在度量失真框架中,假设 n 个选民和 m 个候选人共同嵌入一个度量空间,这样选民对离自己越近的候选人的排名就越高。投票规则旨在选出与选民总距离最小的候选人,只给出排名,而不是实际距离。因此,在最坏的情况下,每个确定性规则都会选择一个候选者,其总距离至少是最优规则的三倍,即失真至少为 3。 该研究的主要成果是一个极其简单的投票规则,称为 PLURALITYVETO,它同样实现了 3 的最优失真。每个候选人开始时的得分等于他的第一名投票数。之后分数通过 n 轮否决会下降,在这个过程中,当一个候选人的分数达到 0 时,他就会退出。选民逐个地降低他们在候选人中排名靠后的分数,最后一位候选人获胜。 论文 2:QCDCL with Cube Learning or Pure Literal Elimination - What is best?