【AAAI2021】小样本学习多标签意图检测

2020 年 12 月 8 日 专知

简介:小样本学习(Few-shot Learning)近年来吸引了大量的关注,但是针对多标签问题(Multi-label)的研究还相对较少。在本文中,我们以用户意图检测任务为切入口,研究了的小样本多标签分类问题。对于多标签分类的SOTA方法往往会先估计标签-样本相关性得分,然后使用阈值来选择多个关联的标签。 为了在只有几个样本的Few-shot场景下确定合适的阈值,我们首先在数据丰富的多个领域上学习通用阈值设置经验,然后采用一种基于非参数学习的校准(Calibration)将阈值适配到Few-shot的领域上。 为了更好地计算标签-样本相关性得分,我们将标签名称嵌入作为表示(Embedding)空间中的锚点,以优化不同类别的表示,使它们在表示空间中更好的彼此分离。 在两个数据集上进行的实验表明,所提出的模型在1-shot和5-shot实验均明显优于最强的基线模型(baseline)。


https://www.zhuanzhi.ai/paper/caf3b2b72106ee93d00ddbe2416c4e1a



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“多标签意图检测” 就可以获取【AAAI2021】小样本学习多标签意图检测》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

专知会员服务
44+阅读 · 2021年1月31日
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
【AAAI2021】用于多标签图像分类的深度语义词典学习
专知会员服务
14+阅读 · 2020年12月30日
【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
40+阅读 · 2020年12月19日
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
29+阅读 · 2020年12月7日
【AAAI2021】利用先验知识对场景图进行分类
专知会员服务
60+阅读 · 2020年12月3日
【WSDM2021】弱监督下的分层元数据感知文档分类
专知会员服务
10+阅读 · 2020年11月16日
【ACMMM2020-北航】协作双路径度量的小样本学习
专知会员服务
28+阅读 · 2020年8月11日
【ICML 2020 】小样本学习即领域迁移
专知
5+阅读 · 2020年6月26日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
12+阅读 · 2019年2月28日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2021年1月31日
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
【AAAI2021】用于多标签图像分类的深度语义词典学习
专知会员服务
14+阅读 · 2020年12月30日
【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
40+阅读 · 2020年12月19日
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
29+阅读 · 2020年12月7日
【AAAI2021】利用先验知识对场景图进行分类
专知会员服务
60+阅读 · 2020年12月3日
【WSDM2021】弱监督下的分层元数据感知文档分类
专知会员服务
10+阅读 · 2020年11月16日
【ACMMM2020-北航】协作双路径度量的小样本学习
专知会员服务
28+阅读 · 2020年8月11日
相关论文
Arxiv
21+阅读 · 2020年10月11日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
12+阅读 · 2019年2月28日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员