KDD2020 | 真实世界超图的结构模式和生成模型

2020 年 8 月 18 日 专知


图已被用作对人或物体之间的成对关系建模的强大工具。而超图是更广泛概念的一种特殊类型,其中每个超边可以由任意数量的节点组成,而不是仅由两个组成。大量的现实世界数据集都是这种形式的。比如电子邮件的收件人列表,参与讨论主题的用户或在线问题中标记的主题标签等。由于这些情况表示形式复杂且缺少适当的工具,因此在研究中很少会去关注探索这些问题的建模与算法。


本篇论文根据经验研究了多个跨领域的真实世界超图数据集。为了进行深入研究,引入了多级分解方法,该方法通过一组成对图表示每个超图。每个成对图(称为k级分解图)捕获了k个节点的子集对之间的交互。通过经验的总结,在每个分解级别,所研究的超图都遵循五个结构特性或者指标。这些属性用作评估超图的逼真度的标准,并为超图生成问题奠定基础。文章最后提出了一种超图生成器,采取了非常简单的思路,但是能够满足这些评估指标。与此相比的是其他对比模型则很难达到同样的效果。


https://www.zhuanzhi.ai/paper/84dcdb8686f27852f81a0a23d48ce2dd

专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“SPGM” 可以获取《KDD2020 | 真实世界超图的结构模式和生成模型》专知下载链接索引

专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
登录查看更多
3

相关内容

专知会员服务
23+阅读 · 2020年9月25日
专知会员服务
49+阅读 · 2020年8月27日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ICML2020-浙江大学】对抗性互信息的文本生成
专知会员服务
43+阅读 · 2020年7月4日
【KDD2020】动态知识图谱的多事件预测
专知
88+阅读 · 2020年8月31日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知
9+阅读 · 2020年8月11日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
KDD2020接受论文列表!338篇论文都在这了
专知
20+阅读 · 2020年6月26日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
Top
微信扫码咨询专知VIP会员