原创: 火柴Q、杨逍 甲子光年
在2018年的Gartner技术成熟度曲线中,刺激此轮AI热潮的代表性技术——深度学习
(Deep Learning)
已到了泡沫顶峰,可能需要2至5年才能进入最后的稳定发展平台期
(Plateau of Productivity)
。
金融、医疗市场,数据难拿;以视觉技术为主的安防看似红海,但收入中,基础设施占比大,技术服务占比小;语音和语义的to C音箱等赛道需要更大销量自证,to B客服等赛道亟待摆脱外包处境;此前被乐观期待的自动驾驶面临技术、伦理双挑战。
从消费互联网的3年上市到行业AI落地的细水长流,希望押出下一个伟大公司的一级市场也陷入迷惑:风口不再,价值难寻。
而在市场气氛低迷的2019年,一个以往并不最在风口浪尖的领域——面向制造业、物流等生产环节的智能工业机器人赛道却逆势而上,红杉、高瓴、高榕、晨兴、启明、顺为等头部机构纷纷加码:
2月,AI工业视觉公司阿丘科技获君联领投的A+轮融资;
4月,协作机器人公司节卡机器人获赛富领投的B轮融资;
7月,智能机械臂公司Agile获来自高瓴、红杉、天智航、线性的Pre-A轮融资;
上周五,以实现“pick anything, place anywhere anyway”为目标的初创公司XYZ Robotics获高榕、晨兴领投的A轮融资。
本周一,工业机器人智能化公司梅卡曼德宣布获英特尔投资。
本周二,机器人本体厂商艾利特获国中创投领投的B轮融资。
连续三个工作日,都有机器人公司发布融资消息,赛道热度可见一斑。
据IT桔子数据,2018年智能工业机器人赛道的投资案例为66起;而截至7月,今年上半年的投资事件已达43起。
创业公司之外,ABB、发那科、西门子等机械臂、工业自动化传统强者,阿里、京东等科技巨头,海康、商汤、旷视等其他赛道AI头部公司也纷纷布局这一领域。
然而,细分赛道回暖之下,各玩家仍面临工业领域的一个严峻规律:
这个行业重资质、高门槛,围绕相似新方案竞争的所有人,都面临相同的时间窗——谁能率先落地,积累案例,就会逐渐把慢一拍的人越甩越远。
本文,「甲子光年」要介绍的案例是在昨日宣布获英特尔投资的梅卡曼德。这已是继4月获启明创投A+轮融资后,梅卡曼德在今年的第二轮融资。
在目前的工业机器人智能化赛道中,梅卡曼德已率先进入规模化落地阶段:
创立近3年来,梅卡曼德已获得了包括华为和数家知名整车厂在内的众多汽车、家电、钢铁、物流等行业的头部客户;并进一步扩展至医院、银行金库等商业场景。
英特尔投资中国区总经理王天琳告诉「甲子光年」:“梅卡曼德真的是花了时间、精力趟坑,取得了比较理想的阶段性成果。工业行业很难做,能得到这些级别客户的认可,很不容易。”
机械臂传统巨头川崎机器人中国技术部部长铃木敏幸也告诉「甲子光年」:“梅卡曼德是他见过的智能视觉技术做得最好的公司。”
本文,「甲子光年」实地走访了梅卡曼德部分客户的生产线现场,采访了其终端客户,集成商、机械臂厂家等合作伙伴,梅卡曼德创始人、一线技术和销售人员,以及多位关注该赛道的投资人,探寻深入物理生产场景的“Physcial AI”如何落地。
机器人智能化的商业进展,能为AI与传统场景的结合带来新可能吗?
在此次深入工厂的采访中,「甲子光年」在梅卡曼德服务的某中国著名家电厂商车间里看到了这样一幕:
长达4小时的现场沟通中,身穿灰蓝厂服的车间负责人话头一直没停,他拉着梅卡曼德创始人邵天兰在各个产线上来回穿梭,一个点、一个点地过需求,除了双方已在合作的某空调部件装卸项目之外,这位负责人接连提到,产线上还有搬运上料、折弯、涂胶等大量需要机器替代的环节。
实际上,这家家电厂商从7年前就开始探索产线的自动化、智能化改造,并在2015年设立智能装备子公司,生产机械臂、数控机床等产品。
如此功夫背后,是目前中国制造业痛点的一个缩影:人力成本攀升已成为遏住制造业发展的关键瓶颈,机器换人需求强烈。
据国家统计局数据,2007年到2018年,制造业的平均工资已翻了近3倍。
明显的拐点发生在2012年,中国劳动年龄人口规模
较上年减少345万人,是新中国有统计数据以来的首次下降,此后7年,这一数字又连续下降,到2018年已跌破9亿。
同时,严苛的环境加之枯燥的重复性劳作,让90后、00后对工厂望而却步。
在走访汽车主机厂和其零部件工厂时,「甲子光年」也亲身体验了没有空调的车间里难耐的闷热,和即使戴着专业口罩、耳塞也无法完全阻绝的绵延噪音与化学加工剂气味。
工厂经常有钱也招不到人。上述家电厂商就曾尝试直接把大巴开到山区“抓壮丁”,但效果不佳;生产旺季,有些工厂还会打出“高薪兼职”的广告,但应者寥寥。
柔顺控制和以深度学习为代表的AI等技术,在学界酝酿数十年后,到了商业落地的临界点,这为改造自上世纪60年代诞生以来,少有革命性变革的工业机器人领域带来了全新可能。
具体变化表现在,深度学习、3D视觉、自主规划、柔顺控制等技术的发展,让原本主要通过编程实现设定动作的机械臂有了更好的“眼睛和大脑”,增加了环境感知和复杂规划能力,可处理更灵活的任务。
这些智能化技术的出现,让“为自由而生”的机器人进一步靠近了灵活性和适应性更强的人类。
这一改过去,工业机器人的最主流应用场景被限制在制造业中环境相对固定的冲压、焊接、喷涂、物料搬运、码垛等环节的情况,为机器人进入更多制造业细分领域,和向制造业之外的物流、商业场景渗透带来了广阔空间。
比如,近年来就已出现了一批声称要将机器人用来做披萨、做汉堡、叠衣服的创业公司。
3D相机以及AI视觉算法的进步使机器人有望处理物体种类极为多样的快递分拣等复杂场景。(梅卡曼德供图)
需求强劲加上技术突破,全球在2012年迎来了一波“智能化机器人热潮”:
Amazon于当年收购机器人公司Kiva Systems;
Google在2012到2013年间,一口气收购了包括波士顿动力在内的9家机器人公司;
贝佐斯从2008年起连续8轮投资了机器人公司Rethink Robotics;
郭台铭也在2012年宣布,富士康要在3年内打造“百万机器人”;
软银孙正义曾在多个场合说:30年后,会有100亿机器人与100亿人类共同生活。
据IT桔子对2017年上半年AI领域投资情况的统计,智能机器人的融资事件最多,约占投资总数的28%。
一批智能机器人新公司纷纷成立,如库柏特
(2016)
、梅卡曼德
(2016)
、非夕
(2016)
、阿丘科技
(2017)
、Agile
(2018)
、XYZ
(2018)
等。
其中既有ABB
(瑞士)
、发那科
(日本)
、安川
(日本)
、库卡
(德国,已被美的于2017年以40亿欧元收购)
、西门子
(德国)
等机械臂或工厂自动化领域的传统老牌企业。
也有阿里、京东等互联网科技公司。如达摩院、菜鸟人工智能事业部、京东AI研究院都在进行与机械臂或AGV
(搬运机器人,可用于物流自动化场景)
直接相关的研发。
甚至海康、旷视等其他AI领域头部公司也已进入该赛道:海康在2016年成立海康机器人,主打机器视觉和物流机器人
(主要是AGV)
的结合;旷视在2018年收购AGV公司艾瑞思,成立旷视机器人,并于今年1月推出机器人网络协作大脑“河图”,还在发布会上宣布要投入20亿,加速智能机器人落地。
但2016年至今,从赛道整体情况看,工业机器人智能化的发展仍落后预期
,大部分公司还处于从demo到落地,打磨种子客户的阶段。
曾在2017到2018年,接连投资慧灵、珞石、非夕等工业机器人本体公司(即自己生产机械臂的公司),对机器人智能化亦有深入观察的前顺为资本执行董事孟醒告诉「甲子光年」,落地慢,主要是当初的两个设想并未实现:
设想1:
工业机器人的渗透率能快速上升,并从制造业进入别的场景
现实:虽然2018年之前,从采购量看,中国已连续5年成为全球最大的工业机器人市场,但在2018年后的经济下行中,各企业对机器人的采购意愿有所回落。
设想2:
机器人智能化公司可通过抽取共同需求,开发出通用的抓取等软件包,以高复用的标准化产品服务大量客户。
现实:落地时,由于制造业场景非常碎和多元,实现高复用很难,许多公司在真正下水赚钱时,又把自己搞成了集成商。
落差背后,是新技术在工业、生产领域落地的3重难点。
难点1:对前沿AI技术和行业经验的双重需求VS市场上缺乏拥有综合能力的团队
在机器人智能化领域,真要打磨出可用的产品,需要团队既掌握AI视觉算法等前沿技术,又了解制造业、物流等场景的真实需求。
老牌玩家有行业认知优势,但较难补足基因和技术短板。
怀有技术的创业公司则必须克服经验不足、对行业了解不透的问题。
投资了梅卡曼德、优必选机器人、旷视科技的启明创投投资人周志峰告诉「甲子光年」,他从2013年开始关注这一赛道,尚未看到行业老兵在工业机器人的智能视觉引导技术领域做得好的案例。
“新一代年轻人更敢探索基于深度学习的智能技术,而懂这些技术的人又大多优先选择了金融、互联网等高薪行业,导致工业领域尤其缺乏创新人才。”周志峰说。
难点2:工业场景对稳定性的高要求VS先进新技术落地时需要磨合期
如果说AI在智能音箱、新零售等商业、消费领域落地已然不易,那么工业、生产场景就面临更大挑战。
此次「甲子光年」在多家工厂车间里看到了大量质量控制看板,和诸如“不收不良品、不做不良品、不出不良品”的质量标语——工业化生产,是一个容错率低、对稳定性要求高的场景。
当互联网行业大谈敏捷开发和快速试错时,工业领域谈论的是精益生产
[1]
和六西格玛
[2]
。
当互联网行业追求高MAU
(月活用户)
时,工业领域追求的是高MTBF
(平均故障间隔时间)
。
这就不难理解,制造业的许多客户非常保守:它们看重技术供应商以往的服务经验、已有案例和存续时间。
而新技术的落地,必然会在初期经历与实际场景的磨合期;车间恶劣的物理环境:如粉尘、温度湿度、电压不稳定、电磁干扰等又进一步提升了达到稳定性的难度。
迈过这道坎的助力是目前各行业客户在人力成本压力下的强需求,但也考验着团队能不能抓住机会。
难点3:客户需求多样VS技术公司对边际成本递减的追求
工业场景还有一个特点是需求非常碎片化,这是导致孟醒所说的高复用性设想落空的原因之一。
而作为在研发上高投入、高成本的技术公司,为长远发展,一定要追求边际成本递减的模式,实现“Make Once,Sell Many”。
如何在多元的需求中抽取核心功能并产品化,如何进一步沉淀服务能力和经验是突破这一难点的关键。
重重困难之下,在今年上半年的“新闻不断”之前,市场对工业机器人智能化赛道经历了较长的观望阶段。
英特尔投资王天琳告诉「甲子光年」,他们从2017年就开始关注这一领域,当年夏天接触了刚刚成立不久的梅卡曼德,但直到2019年初才觉得时机成熟:
“AI要在中国工业领域落地,太不容易。我们目前出手的只有梅卡曼德,这也和英特尔的投资风格有关,一个细分赛道里,我们一般只会投一家公司。”王天琳说。
之所以在第一声水花响起前慎于出手,是因为行业长期观察者都明白一个道理:越是在慢赛道,快,越是重要。
因为“慢”背后对应着一系列客户行为方式:谨慎、保守、对已有方案粘性高、替换成本高。
“大型工业企业的采购部门,在面对年轻公司时会观望,观望时间可能比我们做投资都久。因为仍用原有方案,不换不是错;但换了做不好,就是你的问题。”
机器人四大家族
(ABB、库卡、安川、发那科)
平均历史长达106年,172年的西门子更是比全聚德还老17年。
如果不是新技术带来新机会,新玩家很难平白无故地切入工业、生产场景。
而反过来,这种市场特质也意味着,一旦有人率先突破客户,就会把后来者越甩越远;而且在制造业、物流等生产场景,“先行者”席位向来非常有限,全球范围内,未来可能只会容纳3到5个大型公司。
于是,赛道所有玩家头上,都悬着一个紧迫的时间窗
,对自己不掌握场景的创业公司来说尤其如此。
初创,服务案例不足
→
算法能力、稳定性、服务经验得不到真实场景打磨→很难打动客户→继续没有案例。
所以,整个赛道“看过了太多demo,看过了太多video,却迷失在落地中每一次无果的测试”。
而一旦抓住愿意尝试的种子客户,并在服务中建立口碑,突破了时间窗,就能拨动正向飞轮:
逐渐积累案例→在真实场景中沉淀算法、提升稳定性和服务经验→打动更多客户→获得更多案例。
在某中国知名汽车厂商的零部件车间里,两台重载机器人正通过梅卡曼德的3D相机和算法,对各种零部件自动进行打胶作业。现场工人可通过梅卡曼德的图形化操作软件Mech-Viz自行添加新种类的零部件,过程中无需编写任何代码。
而就在5米之外,一群穿着罩衣的工人正在进行人工打胶——这是该厂处理这道工序的传统方式,但近年来,由于熟练工人减少,操作不规范、效率低等问题日益严重,该厂终于启动了自动化改造。
这只是今年以来,梅卡曼德进行的50多个应用项目之一。
邵天兰向「甲子光年」展示了他们从2018年至今的客户pipeline,从2019年开始,订单量增速明显加快,基本每周都会有新客户落单。
制造业——汽车主机厂、汽车零部件生产、家电、钢铁、食品、高铁轨道部件生产等
物流——自动仓、快递中转中心等
其他商业领域——医院、银行金库等
核心场景包括拆码垛、上下料、定位引导/装配、分拣等。
目前,梅卡曼德也已开始出海——他们已在德国开设分公司,并在日本本土通过了前期验证,获得了海外市场订单。
今年6月,梅卡曼德自主研发的Mech-Eye智能相机通过了CE
(欧洲)
、FCC
(美国)
、VCCI
(日本)
三项重要认证,这将为切入十分重资质的海外市场打下基础。
成立不到3年的梅卡曼德在机器人智能化赛道率先砸出水花,跳过时间窗,拿到了下一阶段的比赛入场券。
其投资人周志峰认为,梅卡曼德已开始进入从1到10的规模化发展阶段。
最新一轮的投资人英特尔也是在看到批量客户落地后,终于在今年初结束了长达18个月的观察:
“别的公司大多处于更早期阶段,落地案例不够多,梅卡曼德已开始思考规模化发展,落地经验丰富。”王天琳说。
邵天兰自己现在最在意的问题,已不再是从0到1的打标杆客户,而是从1到10的批量交付。
2019年上半年,梅卡曼德团队扩大了近一倍,大量的交付任务,对年轻团队的考验非常大。
好在,梅卡曼德从成立第一天起,就在打造一个核心武器,这也是他们能拨动正向飞轮的关键。
在「甲子光年」此前发布的《从华为的冬天到AI的冬天》一文中曾提到,AI to B项目落地的一大困境是,对高级算法人才长期驻场的需求和此类人才数量少,驻场成本高、意愿低之间的鸿沟。
所以看似高大上的AI公司,在落地时,很容易变成实质上的外包公司。
这一方面导致成本高昂,公司无法规模化发展,甚至难以实现收支平衡;另一方面导致服务、产品的经验沉淀不到产品上,而是跟着个人走,难以共享。
让梅卡曼德能较好解决这一问题的,是在3D相机、视觉算法、规划算法这些显而易见的“刚需”部分之外,功能上似乎没那么“刚需”的图形化机器人编程软件Mech-Viz。
以往,工业机器人领域处于“各说各话”的巴别塔状态。在为机械臂设定任务时,工程师需要用示教器或离线编程方式进行专业操作,还得掌握多门语言。
对相对简单的传统机器人任务,这种编程方式尚可接受;但当机器人更加智能后,众多子系统要与算法进行复杂配合,传统编程方式越来越不可行。
而完全图形化操作的Mech-Viz兼容了十几种品牌的机械臂编程语言,可让最终使用者在不写代码的情况下,通过拖拽模块快速设定和更改任务,大大降低了使用难度和学习成本。
这也是为什么,在前述汽车厂商的现场,只有两位梅卡曼德工程师。
邵天兰告诉「甲子光年」,这是现在梅卡曼德服务客户时的标配情况:在绝大多数客户现场,他们只有一到两位调试人员。平均调试时间也从成立之初的数个月降到了目前的一至两周
(典型复制性项目)
。
造访工厂的第二周,「甲子光年」又在梅卡曼德北京总部,体验了Mech-Viz对前方作业状态的远程可视化复现。当时,一位工程师正在协助处理华南某大客户的现场需求。
“如果使用传统的机器人编程方式,来做这种包含深度学习、3D视觉、抓取规划、路径规划的项目,工程师很可能得去客户那儿帮着写代码。”邵天兰说。
所以,看起来不是刚需的Mech-Viz实际上采是规模化交付的利器:
它既减少了梅卡曼德自己的驻场和后期维护成本,也能提升客户一线人员的使用体验,减少客户的工程师成本。如梅卡曼德的合作伙伴,某机器人拆码垛领域最大的集成商之一就提到,使用梅卡曼德的产品后,他们的调试速度比过去压缩了一半。
更重要的是,Mech-Viz为公司提供了积累、沉淀经验的通用软件平台。
若没有这个平台,服务客户的各种细碎经验——如不同场景的物体码垛、抓取规划方式等——会散落在写了几千行代码的示教器或某个现场老师傅的脑海中,雁过无痕,无法成为产品持续进化的养分。
但一个问题是,既然新一代机器人编程软件好处良多,为什么赛道里其它玩家不做?
从公司成立第一天起,梅卡曼德就在做Mech-Viz,对其的优化、迭代一直持续到现在。
这首先源于邵天兰对机器人智能化落地的认知,在他看来,机器人的智能化可以被划分为3个维度:
更高的感知——源自传感器和算法技术的进步
更高的规划能力——源自运动规划技术的提升
更优的人机交互方式——需要新一代工业机器人软件系统带来全新编程方式
从最终的客户价值出发,是更复杂的自动化需求,要求机器人具备更高的感知能力;而更高的感知能力又会带来更复杂的规划要求,即灵活根据环境调整运动方式;二者叠加,又会使工业机器人的复杂度大大提升,这就需要更简化的人机交互方式。
先进制造业+工业互联网
产业智能官 AI-CPS
加入知识星球“产业智能研究院”:先进制造业OT(自动化+机器人+工艺+精益)和工业互联网IT(云计算+大数据+物联网+区块链+人工智能)产业智能化技术深度融合,在场景中构建“状态感知-实时分析-自主决策-精准执行-学习提升”的产业智能化平台;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
产业智能化平台作为第四次工业革命的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎;
重构设计、生产、物流、服务等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生
新技术、新产品、新产业、新业态和新模式;
引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能化技术分支用来的今天,制造业者必须了解如何将“智能技术”全面渗入整个公司、产品、业务等商业场景中,
利用工业互联网形成数字化、网络化和智能化力量,实现行业的重新布局、企业的重新构建和焕然新生。
版权声明:产业智能官(ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源,涉权烦请联系协商解决,联系、投稿邮箱:erp_vip@hotmail.com。